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This document contains a proof of Theorem 1 from the paper and a worked ex-
ample of the mathematical technique. A few definitions and figures are restated
to add clarity to the proof along with some expanded explanation.

0.1 Formal Definitions

A directed labeled graph (labeled digraph) G is a set of vertices V, a set of edges
E =V x V, and a labeling function which maps vertices (or edges) to labels
l:V|E — L. E can be represented by a matrix E. E; ; =1 if and only if there
is an edge from vertex v; to vertex v;, otherwise it is 0.

H is a subgraph of G (H C G), if and only if an injective mapping m : Vg —
Vo exists such that:

1. All vertices in H map vertices in G with the same label:

VoeVy llg) =lg(m(v))]
2. All edges in H are in G:
YV (u,v) € Eg [(m(u),m(v)) € Eg]
3. All edge labels match:
V (u,v) € Eg [lg(u,v) = lg(m(u), m(v))]
Such a mapping m is known as an embedding. A digraph A is isomorphic to
another digraph B, A =2 B, if AC B and B C A. The isomorphism class of a
subgraph H is the set of all of the subgraphs of G isomorphic to H with distinct
mappings, denoted [H] ={H'CG: H 2 H Amyg # my}.

The subgraph relation - C - induces a connected subgraph lattice Lg rep-
resenting all possible ways of constructing G (see Figure 1). L can itself be
viewed as a directed graph where each vertex u represents a unique connected’
subgraph of G. An edge exists between u and v if adding one edge to u creates
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!n this paper, connected ignores edge direction (see Fig. 2).



Figure 1: A connected subgraph lattice. The bottom node of the lattice contains
the graph all other graphs are a subgraph of.
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a subgraph u + € which is isomorphic to v, v & u + €. A k-frequent connected
subgraph lattice k-Lg contains only those subgraphs which have at least k& em-
beddings in G, see Figure 2. Finally, a pattern refers to the isomorphism class
[H] of a subgraph H.

0.2 Computing the Probability of Selecting a Maximal
Subgraph

In order to use the HT estimator outlined in the paper, it is necessary to deter-
mine the probability p; that the i*" maximal frequent pattern [H;] is selected
on a random walk of the k-frequent connected subgraph lattice (k-Lg). We
compute these probabilities using the theory of Markov chains.

A finite-state Markov chain [1] consists of a finite set of states, S = {s1,...,5,},
and a matrix P, called the transition matriz, where P; ; gives the probability
of a state transition from s; to s;. A Markov chain moves from state to state
according to the probabilities in the transition matrix. A random walk in a
graph G can be viewed as a Markov chain whose set of states S corresponds to
the vertex set V. An absorbing Markov chain [1] is a special type of Markov



Figure 2: Figure 2b is a connected subgraph lattice of Figure 2a but only includes
subgraphs with 2 or more embeddings in Figure 2a. The boxed nodes in the
graph show the embeddings of the boxed subgraph in the lattice. The lattice
places subgraphs in a partial order where a subgraph A is less than B if A is a
subgraph of B. (See Section 0.1)
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chain which always ends in a state that cannot be exited, called an absorbing
state.

To construct an absorbing Markov chain from the lattice k-L¢, let the states
of the chain be the vertices of the lattice (i.e., the frequent patterns [H;]). To
model how the algorithm in Listing 1 transitions from one lattice node to the
next by uniformly selecting a neighboring node, let the transition probability
for an edge v; — v; be the reciprocal of the out-degree of v;:

SE ifE; ;=1
P;;= 1 if 1 = j A v; is maximal (1)
0 otherwise

The selection probability p; of [H;] is the probability that state s; absorbs
the Markov process starting at the bottom lattice node. To compute p;, arrange
the transition matrix P into canonical form such that the transient states come
before the absorbing states:

TR. ABS.
__ TR. Q R
P = ABS. [ 0 I } (2)

Q;,; is the probability of transitioning from a transient state s; to transient state
s;. R, ; is the probability of transitioning from transient state s; to absorbing
state s;y; where t is the number of transient states. I is the identity matrix



Listing 1: GRAPPLE’s sampling procedure
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# param G : the graph being mined
# param bottom : lattice node for the empty subgraph
# param min_support : int, minimum number of embeddings
# returns : leaf node of the frequent connected subgraph
# lattice which is a maximal frequent subgraph
def walk(G, bottom, min support):
v = u = bottom
while v is not None:
u=v
v = rand_select(get children(G, u, min support))
return u

# param u : a lattice node
# returns : a list of lattice nodes which are 1 edge
# extensions of u
def get children(G, u, min support):
exts = list()
for emb in u.embeddings:
for a in embedding.V:
for e in G.edges to and from(a):
if not emb.has edge(e):
exts.append(emb.extend with edge(e))
groups = group_isomorphs(exts)
return [ LatticeNode(1lbl, group)
for 1bl, group in groups.iteritems()
if len(group) >= min support ]

# param subgraphs : a list of subgraphs of G
# returns : map label -> list of isomorphic subgraphs.
def group_isomorphs(subgraphs):
isomorphs = dict()
for sg in subgraphs:
label = bliss.canonical label(sg)
if label not in isomorphs:
isomorphs[label] = list()
isomorphs[label] .append(sg)
return { label: minimum image supported(group)
for label, group in isomorphs.iteritems() }

and O is the zero matrix, as once a Markov process enters an absorbing state it
never leaves. The probability of a process starting at the bottom of the lattice
so and being absorbed by state s; with zero or more transitions (=) is [1]:

Note, N = (I — Q)™ ! is the fundamental matrix for absorbing Markov chains.

pi = Pr[so 5 5] = (P™)o; = (I- Q)" 'R)o,i—t) = (NR)g ()

It is equivalent to summation of the power series of Q [1].

The term N; ; is the probability of transitioning from state ¢ to state j after 0

N=(I-Q '=1+Q+Q*>+Q%+...

or more steps.




0.2.1 Computing p; with a submatrix of P

Lemma 1. Let s; be an absorbing state in a Markov chain formed from a
k-frequent connected subgraph lattice of a graph G. The selection probability
pi = (NR)g,(i—s) can be computed from a sub-matriz of the transition matriz P
containing only those states from which s; can be reached.

Proof. If there does not exist a path v; % v; in the k-frequent connected sub-
graph lattice k-Lg then the product of its adjacency matrix entries correspond-
ing to any sequence of edges possibly connecting v; to v; must be zero. There-
fore, summing over all such edge sequences, we have:

[e’s} n n n—1
(Z S > Ej ( EM+> Ek> =0 (5)
n=1ki=1 k=1 i=1

The probability of a Markov chain that starts in state s; eventually reaching
state s; is

e’} n n n—1
Pris; S s]=>_ Y .. ) Pjg <H P,%ml) P, i (6)
n=1k =1 k i=1

= n=1

If there does not exist a path in the lattice from v; to v; then this probability is
zero. The selection probability formula p; = (NR); ;) can be rewritten, with
t indicating the number of transient nodes, as shown in Equation 7.

t
pi = NjiRy i) (7)
k=1

Using the definition of the fundamental matrix this equation can be rewritten
as follows obtaining Equation 11.

i n
pi=y (}}3 <I 2 Qe)) ) (8)
t [eS) t t " n—1
pi = <Z > Qi (H ka,kHl) an,kRk7(i—t)> (9)
z=1
0o n—1
pi=y (Z Pjk, (H sz,km) PkmkPkw‘> (10)
1 x=1

o] t t n—1
Di = Z Z Z Pj,k1 (H Pk,thl) Pkn,i (11)
, =1

i=1
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Note, Equation 11 is equivalent to the right hand side of Equation 6. Since
Pr[s; = s;] = 0 if there is no path in the lattice from v; to v;, vertices from
which s; cannot be reached have no effect on the computation of p; and can



be omitted. Omitting vertices v; for all v; where there does not exist a path
in the lattice to v; corresponds to removing the j* row and column from P.
Therefore, only a sub-matrix of P containing those states from which s; can be
reached are needed. O

Lemma 2. The states from which an absorbing state s; can be reached in a
Markov chain formed from a k-frequent connected subgraph lattice k-Lg corre-
spond to the vertices of the connected subgraph lattice of the graph represented
by state s;.

Proof. A vertex v of k-Lg represents a graph. Given two vertices u and v of
k-La, u reaches v if and only if a sequences of edges can be added to u such
that u extended with those edges is isomorphic to v (e.g. u+ €1 + €3 + ... Z v).
Thus, the statement u reaches v in k-Lg is equivalent to saying u is a subgraph
of v. If u is a subgraph of v then it will be a vertex in v’s connected subgraph
lattice £, by the definition of connected subgraph lattice. Therefore, all states
in which can reach s; must be correspond to subgraphs of s; and are therefore
in s;’s connected subgraph lattice. O

Theorem 1. Let [H;] be a mazimal k-frequent pattern sampled from k-Lg.
Let s; be the corresponding state in the Markov chain formed from k-Lg. The
selection probability of [H;], pi = (I — Q) 'R)o,(i—t), can be computed from
the submatriz of P that includes only the rows and columns that correspond to
subgraphs of H;.

Proof. By Lemma 2 all states of the Markov chain which can reach s; correspond
to subgraphs of s;. By Lemma 1 the only rows and columns of P which are
necessary are the rows and columns for states which can reach s;. Therefore,
the sub-matrix of P that is needed only contains states which correspond to
subgraphs of H; and are in the connected subgraph lattice Ly, . O

As a consequence of Theorem 1, only a sub-matrix of P is needed to compute
p; for any given i, and that sub-matrix is exactly the one which corresponds to
the connected subgraph lattice computed from the target subgraph.



Example 1. The lattice in figure 2 corresponds to the following matriz P ar-
ranged in canonical form. Note: the empty spaces in the matrices represent the
number 0.

0o 1 2 3 4 5 6 7 8 9 10 11 12
0 33 .33 .33 1
1 B TR
2 25 .25 25 .25
3 33 .33 .33
4 1
5 1
6 5 .5
7 5 5
8 RS TN
9 1
10 1
11 1
12 | 1 |

If the subgraph Hi1 = a — ¢ — ¢, corresponding to state s11, is sampled the
following would be the submatrix of P needed to compute p11.

) 3 6 8 11
0 33 .33
2 .25
pHi _ 3 33 .33
6 .5
8 .5
11 1

The fundamental submatriz would be:

0 2 3 6 8
o [ 1 .33 .33 .1914 .1089
2 1 .25
N —(1-Qfn)~t =3 1 .33 .33
6 1
8 1
Computing NHuURH 1 yields:
0 2 3 6 8 11 11
o [ 1 .33 .33 .1914 .1089 | o 0 .150
2 1 .25 2 2 125
NAuRHn — 3 1 33 33 |3 =3 | .333
6 1 6 . 6 R5)
8 1 8 ) 8 B3}



The probability for starting at the root node of the lattice (the empty subgraph
Hy) and ending at Hyy is:

pi1 = Priso = s11]

(P=)o11

(I-Q) 'R)o11-9
(I-QM1)~IRM)g
=.150

0.3 Estimation for Sub-populations

Suppose that we wish to estimate the mean pup of a study variable y; for a
sub-population or domain D of the population U of all (isomorphism classes of)
maximal frequent connected subgraphs, where membership in D is not known
beforehand but must be determined by examining members of a sample drawn
from U. This problem arises, for example, if we wish to estimate the average
size of code clones having a particular property, e.g., ones involving security-
sensitive code. We use this technique to examine the proportion of frequent
patterns with more than 8 vertices which are considered to be code clones by
the application developer.

Assume that the size Np of D is unknown. Let S be a sample drawn from
U, let Sp be the part of this sample that belongs to D, and let np be the size
of Sp. (Note that np is a random variable.) To estimate the domain total 7p
we can use the modified Horvitz Thompson estimator [2]:

=y & (12)

i€Sp *

where the sum is over Sp {ather than S. To estimate the domain size Np, we
can use the simpler form Np = Dic Sp ﬂi To estimate the domain mean pp,
we can use the estimator [2]:
. D
fip = — (13)
Np
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