Supplemental Material for Sampling Code Clones from Program Dependence Graphs with GRAPLE

Tim A. D. Henderson^{*} and Andy Podgurski[†]

Department of Electrical Engineering and Computer Science Case Western Reserve University Cleveland, Ohio

This document contains a proof of Theorem 1 from the paper and a worked example of the mathematical technique. A few definitions and figures are restated to add clarity to the proof along with some expanded explanation.

0.1 Formal Definitions

A directed labeled graph (labeled digraph) G is a set of vertices V, a set of edges $E = V \times V$, and a labeling function which maps vertices (or edges) to labels $l: V | E \to L$. E can be represented by a matrix **E**. $\mathbf{E}_{i,j} = 1$ if and only if there is an edge from vertex v_i to vertex v_j , otherwise it is 0.

H is a subgraph of G $(H\sqsubseteq G),$ if and only if an injective mapping $m:V_H\to V_G$ exists such that:

1. All vertices in H map vertices in G with the same label:

 $\forall v \in V_H \ [l_H(v) = l_G(m(v))]$

- 2. All edges in H are in G:
 - $\forall (u, v) \in E_H [(m(u), m(v)) \in E_G]$
- 3. All edge labels match:

 $\forall (u,v) \in E_H [l_H(u,v) = l_G(m(u), m(v))]$

Such a mapping m is known as an *embedding*. A digraph A is *isomorphic* to another digraph B, $A \cong B$, if $A \sqsubseteq B$ and $B \sqsubseteq A$. The *isomorphism class* of a subgraph H is the set of all of the subgraphs of G isomorphic to H with distinct mappings, denoted $\llbracket H \rrbracket = \{H' \sqsubseteq G : H' \cong H \land m_{H'} \neq m_H\}$.

The subgraph relation $\cdot \sqsubseteq \cdot$ induces a *connected subgraph lattice* \mathcal{L}_G representing all possible ways of constructing G (see Figure 1). \mathcal{L}_G can itself be viewed as a directed graph where each vertex u represents a unique connected¹ subgraph of G. An edge exists between u and v if adding one edge to u creates

^{*}tadh@case.edu

[†]podgurski@case.edu

 $^{^1 \}mathrm{In}$ this paper, *connected* ignores edge direction (see Fig. 2).

Figure 1: A connected subgraph lattice. The bottom node of the lattice contains the graph all other graphs are a subgraph of.

a subgraph $u + \epsilon$ which is isomorphic to $v, v \cong u + \epsilon$. A k-frequent connected subgraph lattice $k \cdot \mathcal{L}_G$ contains only those subgraphs which have at least k embeddings in G, see Figure 2. Finally, a pattern refers to the isomorphism class $\llbracket H \rrbracket$ of a subgraph H.

0.2 Computing the Probability of Selecting a Maximal Subgraph

In order to use the HT estimator outlined in the paper, it is necessary to determine the probability p_i that the i^{th} maximal frequent pattern $\llbracket H_i \rrbracket$ is selected on a random walk of the k-frequent connected subgraph lattice $(k-\mathcal{L}_G)$. We compute these probabilities using the theory of Markov chains.

A finite-state Markov chain [1] consists of a finite set of states, $S = \{s_1, \ldots, s_n\}$, and a matrix **P**, called the *transition matrix*, where $\mathbf{P}_{i,j}$ gives the probability of a state transition from s_i to s_j . A Markov chain moves from state to state according to the probabilities in the transition matrix. A random walk in a graph G can be viewed as a Markov chain whose set of states S corresponds to the vertex set V_G . An absorbing Markov chain [1] is a special type of Markov Figure 2: Figure 2b is a connected subgraph lattice of Figure 2a but only includes subgraphs with 2 or more embeddings in Figure 2a. The boxed nodes in the graph show the embeddings of the boxed subgraph in the lattice. The lattice places subgraphs in a partial order where a subgraph A is less than B if A is a subgraph of B. (See Section 0.1)

(a) A labeled directed graph

(b) 2-frequent connected subgraph lattice

chain which always ends in a state that cannot be exited, called an *absorbing state*.

To construct an absorbing Markov chain from the lattice $k-\mathcal{L}_G$, let the states of the chain be the vertices of the lattice (i.e., the frequent patterns $\llbracket H_i \rrbracket$). To model how the algorithm in Listing 1 transitions from one lattice node to the next by uniformly selecting a neighboring node, let the transition probability for an edge $v_i \to v_j$ be the reciprocal of the out-degree of v_i :

$$\mathbf{P}_{i,j} = \begin{cases} \frac{1}{\sum_{k} \mathbf{E}_{i,k}} & \text{if } \mathbf{E}_{i,j} = 1\\ 1 & \text{if } i = j \wedge v_i \text{ is maximal}\\ 0 & \text{otherwise} \end{cases}$$
(1)

The selection probability p_i of $\llbracket H_i \rrbracket$ is the probability that state s_i absorbs the Markov process starting at the bottom lattice node. To compute p_i , arrange the transition matrix **P** into *canonical form* such that the transient states come before the absorbing states:

$$\mathbf{P} = {}_{\text{ABS.}}^{\text{TR.}} \left[\begin{array}{c} \mathbf{Q} & \mathbf{R} \\ \mathbf{0} & \mathbf{I} \end{array} \right]$$
(2)

 $\mathbf{Q}_{i,j}$ is the probability of transitioning from a transient state s_i to transient state s_j . $\mathbf{R}_{i,j}$ is the probability of transitioning from transient state s_i to absorbing state s_{t+j} where t is the number of transient states. I is the identity matrix

Listing 1: GRAPPLE's sampling procedure

1	# param G : the graph being mined
2	# param bottom : lattice node for the empty subgraph
3	<i># param min support : int, minimum number of embeddings</i>
4	# returns : leaf node of the frequent connected subgraph
5	# lattice which is a maximal frequent subgraph
6	<pre>def walk(G, bottom, min support):</pre>
7	v = u = bottom
8	while v is not None:
9	u = v
10	<pre>v = rand_select(get_children(G, u, min_support))</pre>
11	return u
12	
13	# param u : a lattice node
14	<pre># returns : a list of lattice nodes which are 1 edge</pre>
15	# extensions of u
16	<pre>def get_children(G, u, min_support):</pre>
17	exts = list()
18	for emb in u.embeddings:
19	for a in embedding.V:
20	<pre>for e in G.edges_to_and_from(a):</pre>
21	<pre>if not emb.has_edge(e):</pre>
22	<pre>exts.append(emb.extend_with_edge(e))</pre>
23	groups = group_isomorphs(exts)
24	<pre>return [LatticeNode(lbl, group)</pre>
25	<pre>for lbl, group in groups.iteritems()</pre>
26	<pre>if len(group) >= min_support]</pre>
27	
28	<pre># param subgraphs : a list of subgraphs of G</pre>
29	<pre># returns : map label -> list of isomorphic subgraphs.</pre>
30	def group_isomorphs(subgraphs):
31	<pre>isomorphs = dict()</pre>
32	for sg in subgraphs:
33	label = bliss.canonical_label(sg)
34	if label not in isomorphs:
35	<pre>isomorphs[label] = list() isomorphs[label] = rest()</pre>
36	<pre>isomorphs[label].append(sg) return (label).minimum image supported(group)</pre>
37	<pre>return { label: minimum_image_supported(group) for label</pre>
38	<pre>for label, group in isomorphs.iteritems() }</pre>

and **0** is the zero matrix, as once a Markov process enters an absorbing state it never leaves. The probability of a process starting at the bottom of the lattice s_0 and being absorbed by state s_i with zero or more transitions $(\stackrel{\star}{\rightarrow})$ is [1]:

$$p_i = \Pr[s_0 \stackrel{\star}{\to} s_i] = (\mathbf{P}^{\infty})_{0,i} = ((\mathbf{I} - \mathbf{Q})^{-1} \mathbf{R})_{0,(i-t)} = (\mathbf{N} \mathbf{R})_{0,(i-t)}$$
(3)

Note, $\mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1}$ is the fundamental matrix for absorbing Markov chains. It is equivalent to summation of the power series of \mathbf{Q} [1].

$$\mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1} = \mathbf{I} + \mathbf{Q} + \mathbf{Q}^2 + \mathbf{Q}^3 + \dots$$
(4)

The term $\mathbf{N}_{i,j}$ is the probability of transitioning from state *i* to state *j* after 0 or more steps.

0.2.1 Computing p_i with a submatrix of P

Lemma 1. Let s_i be an absorbing state in a Markov chain formed from a k-frequent connected subgraph lattice of a graph G. The selection probability $p_i = (\mathbf{NR})_{0,(i-t)}$ can be computed from a sub-matrix of the transition matrix \mathbf{P} containing only those states from which s_i can be reached.

Proof. If there does not exist a path $v_j \stackrel{\star}{\to} v_i$ in the k-frequent connected subgraph lattice $k \cdot \mathcal{L}_G$ then the product of its adjacency matrix entries corresponding to any sequence of edges possibly connecting v_j to v_i must be zero. Therefore, summing over all such edge sequences, we have:

$$\left(\sum_{n=1}^{\infty}\sum_{k_1=1}^{n}\dots\sum_{k_n=1}^{n}\mathbf{E}_{j,k_1}\left(\prod_{i=1}^{n-1}\mathbf{E}_{k_i,k_{i+1}}\right)\mathbf{E}_{k_n,i}\right) = 0$$
(5)

The probability of a Markov chain that starts in state s_j eventually reaching state s_i is

$$\Pr[s_j \stackrel{\star}{\to} s_i] = \sum_{n=1}^{\infty} \sum_{k_1=1}^n \dots \sum_{k_n=1}^n \mathbf{P}_{j,k_1} \left(\prod_{i=1}^{n-1} \mathbf{P}_{k_i,k_{i+1}}\right) \mathbf{P}_{k_n,i} \tag{6}$$

If there does not exist a path in the lattice from v_j to v_i then this probability is zero. The selection probability formula $p_i = (\mathbf{NR})_{j,(i-t)}$ can be rewritten, with t indicating the number of transient nodes, as shown in Equation 7.

$$p_i = \sum_{k=1}^t \mathbf{N}_{j,k} \mathbf{R}_{k,(i-t)} \tag{7}$$

Using the definition of the fundamental matrix this equation can be rewritten as follows obtaining Equation 11.

$$p_i = \sum_{k=1}^t \left(\lim_{n=1}^\infty \left(\mathbf{I} + \sum_{e=1}^n \mathbf{Q}^e \right) \right)_{j,k} \mathbf{R}_{k,(i-t)}$$
(8)

$$p_{i} = \sum_{k=1}^{t} \left(\sum_{n=1}^{\infty} \sum_{k_{1}=1}^{t} \dots \sum_{k_{n}=1}^{t} \mathbf{Q}_{j,k_{1}} \left(\prod_{x=1}^{n-1} \mathbf{Q}_{k_{x},k_{x+1}} \right) \mathbf{Q}_{k_{n},k} \mathbf{R}_{k,(i-t)} \right)$$
(9)

$$p_{i} = \sum_{k=1}^{t} \left(\sum_{n=1}^{\infty} \sum_{k_{1}=1}^{t} \dots \sum_{k_{n}=1}^{t} \mathbf{P}_{j,k_{1}} \left(\prod_{x=1}^{n-1} \mathbf{P}_{k_{x},k_{x+1}} \right) \mathbf{P}_{k_{n},k} \mathbf{P}_{k,i} \right)$$
(10)

$$p_{i} = \sum_{n=1}^{\infty} \sum_{k_{1}=1}^{t} \dots \sum_{k_{n}=1}^{t} \mathbf{P}_{j,k_{1}} \left(\prod_{i=1}^{n-1} \mathbf{P}_{k_{i},k_{i+1}} \right) \mathbf{P}_{k_{n},i}$$
(11)

Note, Equation 11 is equivalent to the right hand side of Equation 6. Since $\Pr[s_j \xrightarrow{\star} s_i] = 0$ if there is no path in the lattice from v_j to v_i , vertices from which s_i cannot be reached have no effect on the computation of p_i and can

be omitted. Omitting vertices v_j for all v_j where there does not exist a path in the lattice to v_i corresponds to removing the j^{th} row and column from **P**. Therefore, only a sub-matrix of **P** containing those states from which s_i can be reached are needed.

Lemma 2. The states from which an absorbing state s_i can be reached in a Markov chain formed from a k-frequent connected subgraph lattice $k-\mathcal{L}_G$ correspond to the vertices of the connected subgraph lattice of the graph represented by state s_i .

Proof. A vertex v of k- \mathcal{L}_G represents a graph. Given two vertices u and v of k- \mathcal{L}_G , u reaches v if and only if a sequences of edges can be added to u such that u extended with those edges is isomorphic to v (e.g. $u + \epsilon_1 + \epsilon_2 + ... \cong v$). Thus, the statement u reaches v in k- \mathcal{L}_G is equivalent to saying u is a subgraph of v. If u is a subgraph of v then it will be a vertex in v's connected subgraph lattice \mathcal{L}_v by the definition of connected subgraph lattice. Therefore, all states in which can reach s_i must be correspond to subgraphs of s_i and are therefore in s_i 's connected subgraph lattice.

Theorem 1. Let $\llbracket H_i \rrbracket$ be a maximal k-frequent pattern sampled from $k \cdot \mathcal{L}_G$. Let s_i be the corresponding state in the Markov chain formed from $k \cdot \mathcal{L}_G$. The selection probability of $\llbracket H_i \rrbracket$, $p_i = ((\mathbf{I} - \mathbf{Q})^{-1} \mathbf{R})_{0,(i-t)}$, can be computed from the submatrix of \mathbf{P} that includes only the rows and columns that correspond to subgraphs of H_i .

Proof. By Lemma 2 all states of the Markov chain which can reach s_i correspond to subgraphs of s_i . By Lemma 1 the only rows and columns of \mathbf{P} which are necessary are the rows and columns for states which can reach s_i . Therefore, the sub-matrix of \mathbf{P} that is needed only contains states which correspond to subgraphs of H_i and are in the connected subgraph lattice \mathcal{L}_{H_i} .

As a consequence of Theorem 1, only a sub-matrix of \mathbf{P} is needed to compute p_i for any given *i*, and that sub-matrix is exactly the one which corresponds to the connected subgraph lattice computed from the target subgraph.

Example 1. The lattice in figure 2 corresponds to the following matrix \mathbf{P} arranged in canonical form. Note: the empty spaces in the matrices represent the number 0.

If the subgraph $H_{11} = a \rightarrow c \rightarrow c$, corresponding to state s_{11} , is sampled the following would be the submatrix of **P** needed to compute p_{11} .

$$\mathbf{P}^{H_{11}} = \begin{bmatrix} 0 & 2 & 3 & 6 & 8 & 11 \\ 0 & & & & & \\ 2 & & & & & \\ 3 & & & & & & \\ 8 & & & & & & & \\ 11 & & & & & & & 1 \end{bmatrix}$$

The fundamental submatrix would be:

$$\mathbf{N}^{H_{11}} = (\mathbf{I} - \mathbf{Q}^{H_{11}})^{-1} = \begin{bmatrix} 0 & 2 & 3 & 6 & 8 \\ 0 & 1 & .33 & .33 & .1914 & .1089 \\ 2 & 1 & .25 & \\ & 1 & .33 & .33 \\ & & 1 & \\ 8 & & & 1 \end{bmatrix}$$

Computing $\mathbf{N}^{H_{11}}\mathbf{R}^{H_{11}}$ yields:

The probability for starting at the root node of the lattice (the empty subgraph H_0) and ending at H_{11} is:

$$p_{11} = Pr[s_0 \stackrel{\star}{\to} s_{11}]$$

= (**P**^{\infty})_{0,11}
= ((**I** - **Q**)^{-1}**R**)_{0,11-9}
= ((**I** - **Q**^{H_{11}})^{-1}**R**^{H_{11}})_{0,0}
= .150

0.3 Estimation for Sub-populations

Suppose that we wish to estimate the mean $\mu_{\mathcal{D}}$ of a study variable y_i for a sub-population or domain \mathcal{D} of the population \mathcal{U} of all (isomorphism classes of) maximal frequent connected subgraphs, where membership in \mathcal{D} is not known beforehand but must be determined by examining members of a sample drawn from \mathcal{U} . This problem arises, for example, if we wish to estimate the average size of code clones having a particular property, e.g., ones involving security-sensitive code. We use this technique to examine the proportion of frequent patterns with more than 8 vertices which are considered to be code clones by the application developer.

Assume that the size $\mathcal{N}_{\mathcal{D}}$ of \mathcal{D} is unknown. Let \mathcal{S} be a sample drawn from \mathcal{U} , let $\mathcal{S}_{\mathcal{D}}$ be the part of this sample that belongs to \mathcal{D} , and let $n_{\mathcal{D}}$ be the size of $\mathcal{S}_{\mathcal{D}}$. (Note that $n_{\mathcal{D}}$ is a random variable.) To estimate the domain total $\tau_{\mathcal{D}}$ we can use the modified Horvitz Thompson estimator [2]:

$$\hat{\tau}_{\mathcal{D}} = \sum_{i \in \mathcal{S}_{\mathcal{D}}} \frac{y_i}{\pi_i} \tag{12}$$

where the sum is over $S_{\mathcal{D}}$ rather than S. To estimate the domain size $\mathcal{N}_{\mathcal{D}}$, we can use the simpler form $\hat{\mathcal{N}}_{\mathcal{D}} = \sum_{i \in S_{\mathcal{D}}} \frac{1}{\pi_i}$. To estimate the domain mean $\mu_{\mathcal{D}}$, we can use the estimator [2]:

$$\hat{\mu}_{\mathcal{D}} = \frac{\hat{\tau}_{\mathcal{D}}}{\hat{\mathcal{N}}_{\mathcal{D}}} \tag{13}$$

References

- GRINSTEAD, C. M., AND SNELL, J. L. Introduction to Probability, 2 ed. American Mathematical Society, Providence, RI, 1997.
- [2] SÄRNDAL, C.-E., SWENSSON, B., AND WRETMAN, J. Model Assisted Survey Sampling. Springer-Verlag, 1992.