Supplemental Material for Sampling Code Clones from Program Dependence Graphs with GRAPLE

Tim A. D. Henderson* and Andy Podgurski†

Department of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, Ohio

This document contains a proof of Theorem 1 from the paper and a worked example of the mathematical technique. A few definitions and figures are restated to add clarity to the proof along with some expanded explanation.

0.1 Formal Definitions

A directed labeled graph (labeled digraph) G is a set of vertices V, a set of edges $E = V \times V$, and a labeling function which maps vertices (or edges) to labels $l : V \cup E \rightarrow L$. E can be represented by a matrix E. $E_{i,j} = 1$ if and only if there is an edge from vertex v_i to vertex v_j, otherwise it is 0.

H is a subgraph of G ($H \subseteq G$), if and only if an injective mapping $m : V_H \rightarrow V_G$ exists such that:

1. All vertices in H map vertices in G with the same label:
 \[\forall v \in V_H \ [l_H(v) = l_G(m(v))] \]

2. All edges in H are in G:
 \[\forall (u, v) \in E_H \ [(m(u), m(v)) \in E_G] \]

3. All edge labels match:
 \[\forall (u, v) \in E_H \ [l_H(u, v) = l_G(m(u), m(v))] \]

Such a mapping m is known as an embedding. A digraph A is isomorphic to another digraph B, $A \cong B$, if $A \subseteq B$ and $B \subseteq A$. The isomorphism class of a subgraph H is the set of all of the subgraphs of G isomorphic to H with distinct mappings, denoted $[H] = \{H' \subseteq G : H' \cong H \land m_{H'} \neq m_H\}$.

The subgraph relation $\cdot \subseteq \cdot$ induces a connected subgraph lattice L_G representing all possible ways of constructing G (see Figure 1). L_G can itself be viewed as a directed graph where each vertex u represents a unique connected1 subgraph of G. An edge exists between u and v if adding one edge to u creates

* tadhi@case.edu
† podgurski@case.edu

1 In this paper, connected ignores edge direction (see Fig. 2).
0.2 Computing the Probability of Selecting a Maximal Subgraph

In order to use the HT estimator outlined in the paper, it is necessary to determine the probability p_i that the i^{th} maximal frequent pattern $[H_i]$ is selected on a random walk of the k-frequent connected subgraph lattice (k-L_G). We compute these probabilities using the theory of Markov chains.

A finite-state Markov chain [1] consists of a finite set of states, $S = \{s_1, \ldots, s_n\}$, and a matrix P, called the transition matrix, where $P_{i,j}$ gives the probability of a state transition from s_i to s_j. A Markov chain moves from state to state according to the probabilities in the transition matrix. A random walk in a graph G can be viewed as a Markov chain whose set of states S corresponds to the vertex set V_G. An absorbing Markov chain [1] is a special type of Markov
Figure 2: Figure 2b is a connected subgraph lattice of Figure 2a but only includes subgraphs with 2 or more embeddings in Figure 2a. The boxed nodes in the graph show the embeddings of the boxed subgraph in the lattice. The lattice places subgraphs in a partial order where a subgraph A is less than B if A is a subgraph of B. (See Section 0.1)

(a) A labeled directed graph

(b) 2-frequent connected subgraph lattice

chain which always ends in a state that cannot be exited, called an absorbing state.

To construct an absorbing Markov chain from the lattice $k-L_G$, let the states of the chain be the vertices of the lattice (i.e., the frequent patterns $[H_i]$). To model how the algorithm in Listing 1 transitions from one lattice node to the next by uniformly selecting a neighboring node, let the transition probability for an edge $v_i \rightarrow v_j$ be the reciprocal of the out-degree of v_i:

$$P_{i,j} = \begin{cases} \frac{1}{\sum_k E_{i,k}} & \text{if } E_{i,j} = 1 \\ \frac{1}{|v_i|} & \text{if } i = j \land v_i \text{ is maximal} \\ 0 & \text{otherwise} \end{cases}$$ (1)

The selection probability p_i of $[H_i]$ is the probability that state s_i absorbs the Markov process starting at the bottom lattice node. To compute p_i, arrange the transition matrix P into canonical form such that the transient states come before the absorbing states:

$$P = \begin{bmatrix} Q \ R & \mathbf{1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$ (2)

$Q_{i,j}$ is the probability of transitioning from a transient state s_i to transient state s_j. $R_{i,j}$ is the probability of transitioning from transient state s_i to absorbing state s_{t+j} where t is the number of transient states. \mathbf{I} is the identity matrix.
Listing 1: GRAPPLE’s sampling procedure

```python
# param G : the graph being mined
# param bottom : lattice node for the empty subgraph
# param min_support : int, minimum number of embeddings
# returns : leaf node of the frequent connected subgraph
# lattice which is a maximal frequent subgraph
def walk(G, bottom, min_support):
    v = u = bottom
    while v is not None:
        u = v
        v = rand_select(get_children(G, u, min_support))
    return u

# param u : a lattice node
# returns : a list of lattice nodes which are 1 edge
# extensions of u
def get_children(G, u, min_support):
    exts = list()
    for emb in u.embeddings:
        for a in embedding.V:
            for e in G.edges_to_and_from(a):
                if not emb.has_edge(e):
                    exts.append(emb.extend_with_edge(e))
    groups = group_isomorphs(exts)
    return [LatticeNode(lbl, group) for lbl, group in groups.iteritems()
             if len(group) >= min_support]

# param subgraphs : a list of subgraphs of G
# returns : map label -> list of isomorphic subgraphs.
def group_isomorphs(subgraphs):
    isomorphs = dict()
    for sg in subgraphs:
        label = bliss.canonical_label(sg)
        if label not in isomorphs:
            isomorphs[label] = list()
            isomorphs[label].append(sg)
        return {label: minimum_image_supported(group)
                 for label, group in isomorphs.iteritems()}

and \( \mathbf{0} \) is the zero matrix, as once a Markov process enters an absorbing state it never leaves. The probability of a process starting at the bottom of the lattice \( s_0 \) and being absorbed by state \( s_i \) with zero or more transitions (\( \rightarrow \)) is [1]:

\[
p_i = \Pr[s_0 \rightarrow s_i] = (P^\infty)_{0,i} = ((I - Q)^{-1}R)_{0,(i-t)} = (NR)_{0,(i-t)}
\]  

(3)

Note, \( N = (I - Q)^{-1} \) is the fundamental matrix for absorbing Markov chains. It is equivalent to summation of the power series of \( Q \) [1].

\[
N = (I - Q)^{-1} = I + Q + Q^2 + Q^3 + ...
\]  

(4)

The term \( N_{i,j} \) is the probability of transitioning from state \( i \) to state \( j \) after 0 or more steps.
0.2.1 Computing $p_i$ with a submatrix of $P$

**Lemma 1.** Let $s_i$ be an absorbing state in a Markov chain formed from a $k$-frequent connected subgraph lattice of a graph $G$. The selection probability $p_i = (NR)_{0,(i-t)}$ can be computed from a sub-matrix of the transition matrix $P$ containing only those states from which $s_i$ can be reached.

**Proof.** If there does not exist a path $v_j \rightarrow v_i$ in the $k$-frequent connected subgraph lattice $k-L_G$ then the product of its adjacency matrix entries corresponding to any sequence of edges possibly connecting $v_j$ to $v_i$ must be zero. Therefore, summing over all such edge sequences, we have:

$$\left( \sum_{n=1}^{\infty} \sum_{k_1=1}^{n} \cdots \sum_{k_n=1}^{n} E_{j,k_1} \left( \prod_{i=1}^{n-1} E_{k_i,k_{i+1}} \right) E_{k_n,i} \right) = 0 \quad (5)$$

The probability of a Markov chain that starts in state $s_j$ eventually reaching state $s_i$ is

$$\Pr[s_j \rightarrow s_i] = \sum_{n=1}^{\infty} \sum_{k_1=1}^{n} \cdots \sum_{k_n=1}^{n} P_{j,k_1} \left( \prod_{i=1}^{n-1} P_{k_i,k_{i+1}} \right) P_{k_n,i} \quad (6)$$

If there does not exist a path in the lattice from $v_j$ to $v_i$ then this probability is zero. The selection probability formula $p_i = (NR)_{j,(i-t)}$ can be rewritten, with $t$ indicating the number of transient nodes, as shown in Equation 7.

$$p_i = \sum_{k=1}^{t} N_{j,k} R_{k,(i-t)} \quad (7)$$

Using the definition of the fundamental matrix this equation can be rewritten as follows obtaining Equation 11.

$$p_i = \sum_{k=1}^{t} \left( \lim_{n \to 1} \left( I + \sum_{e=1}^{n} Q^e \right) \right) R_{k,(i-t)} \quad (8)$$

$$p_i = \sum_{k=1}^{t} \left( \sum_{n=1}^{\infty} \sum_{k_1=1}^{t} \cdots \sum_{k_n=1}^{t} Q_{j,k_1} \left( \prod_{x=1}^{n-1} Q_{k_x,k_x+1} \right) Q_{k_n,k} R_{k,(i-t)} \right) \quad (9)$$

$$p_i = \sum_{k=1}^{t} \left( \sum_{n=1}^{\infty} \sum_{k_1=1}^{t} \cdots \sum_{k_n=1}^{t} P_{j,k_1} \left( \prod_{x=1}^{n-1} P_{k_x,k_x+1} \right) P_{k_n,k} P_{k,i} \right) \quad (10)$$

$$p_i = \sum_{n=1}^{t} \sum_{k_1=1}^{t} \cdots \sum_{k_n=1}^{t} P_{j,k_1} \left( \prod_{i=1}^{n-1} P_{k_i,k_{i+1}} \right) P_{k_n,i} \quad (11)$$

Note, Equation 11 is equivalent to the right hand side of Equation 6. Since $\Pr[s_j \rightarrow s_i] = 0$ if there is no path in the lattice from $v_j$ to $v_i$, vertices from which $s_i$ cannot be reached have no effect on the computation of $p_i$ and can
be omitted. Omitting vertices \( v_j \) for all \( v_j \) where there does not exist a path in the lattice to \( v_i \) corresponds to removing the \( j^{th} \) row and column from \( P \). Therefore, only a sub-matrix of \( P \) containing those states from which \( s_i \) can be reached are needed.

**Lemma 2.** The states from which an absorbing state \( s_i \) can be reached in a Markov chain formed from a \( k \)-frequent connected subgraph lattice \( k\mathcal{L}_G \) correspond to the vertices of the connected subgraph lattice of the graph represented by state \( s_i \).

**Proof.** A vertex \( v \) of \( k\mathcal{L}_G \) represents a graph. Given two vertices \( u \) and \( v \) of \( k\mathcal{L}_G \), \( u \) reaches \( v \) if and only if a sequences of edges can be added to \( u \) such that \( u \) extended with those edges is isomorphic to \( v \) (e.g. \( u + \epsilon_1 + \epsilon_2 + ... \cong v \)). Thus, the statement \( u \) reaches \( v \) in \( k\mathcal{L}_G \) is equivalent to saying \( u \) is a subgraph of \( v \). If \( u \) is a subgraph of \( v \) then it will be a vertex in \( v \)'s connected subgraph lattice \( \mathcal{L}_v \) by the definition of connected subgraph lattice. Therefore, all states in which can reach \( s_i \) must be correspond to subgraphs of \( s_i \) and are therefore in \( s_i \)'s connected subgraph lattice.

**Theorem 1.** Let \( [H_i] \) be a maximal \( k \)-frequent pattern sampled from \( k\mathcal{L}_G \). Let \( s_i \) be the corresponding state in the Markov chain formed from \( k\mathcal{L}_G \). The selection probability of \( [H_i] \), \( p_i = ((I - Q)^{-1}R)_{0,(i-t)} \), can be computed from the submatrix of \( P \) that includes only the rows and columns that correspond to subgraphs of \( H_i \).

**Proof.** By Lemma 2 all states of the Markov chain which can reach \( s_i \) correspond to subgraphs of \( s_i \). By Lemma 1 the only rows and columns of \( P \) which are necessary are the rows and columns for states which can reach \( s_i \). Therefore, the sub-matrix of \( P \) that is needed only contains states which correspond to subgraphs of \( H_i \) and are in the connected subgraph lattice \( \mathcal{L}_{H_i} \).

As a consequence of Theorem 1, only a sub-matrix of \( P \) is needed to compute \( p_i \) for any given \( i \), and that sub-matrix is exactly the one which corresponds to the connected subgraph lattice computed from the target subgraph.
Example 1. The lattice in figure 2 corresponds to the following matrix $P$ arranged in canonical form. Note: the empty spaces in the matrices represent the number 0.

$$
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
0 & .33 & .33 & .33 & & & & & & & & & \\
1 & .5 & .5 & & & & & & & & & & \\
3 & & & & & & & & & & & & \\
4 & 1 & & & & & & & & & & & \\
5 & & & & & & & & & & & & \\
6 & .5 & .5 & & & & & & & & & & \\
7 & .5 & .5 & & & & & & & & & & \\
8 & & & & & & & & & & & & \\
9 & 1 & & & & & & & & & & & \\
10 & & & & & & & & & & & & \\
11 & & & & & & & & & & & & \\
12 & 1 & & & & & & & & & & & \\
\end{bmatrix}
$$

If the subgraph $H_{11} = a \rightarrow c \rightarrow c$, corresponding to state $s_{11}$, is sampled the following would be the submatrix of $P$ needed to compute $p_{11}$.

$$
P^H_{11} = \begin{bmatrix}
0 & 2 & 3 & 6 & 8 & 11 \\
0 & .33 & .33 & & & & & & & & & \\
2 & .25 & & & & & & & & & & \\
3 & .33 & .33 & .5 & & & & & & & & \\
6 & .5 & & & & & & & & & & \\
8 & .5 & & & & & & & & & & \\
11 & 1 & & & & & & & & & & \\
\end{bmatrix}
$$

The fundamental submatrix would be:

$$
N^H_{11} = (I - Q^H_{11})^{-1} = \begin{bmatrix}
0 & 2 & 3 & 6 & 8 \\
0 & 1 & .33 & .33 & .1914 & .1089 & & & & & & \\
2 & 1 & .25 & & & & & & & & & & \\
3 & 1 & .33 & .33 & & & & & & & & & & \\
6 & 1 & & & & & & & & & & & \\
8 & 1 & & & & & & & & & & & \\
\end{bmatrix}
$$

Computing $N^H_{11}R^H_{11}$ yields:

$$
N^H_{11}R^H_{11} = \begin{bmatrix}
0 & 2 & 3 & 6 & 8 & 11 & 11 \\
0 & 1 & .33 & .33 & .1914 & .1089 & 0 & & & & & .150 \\
2 & 1 & .25 & & & & & & & & & 2 & 2 & .125 \\
3 & 1 & .33 & .33 & 3 & & & & & & & & & 3 & .333 \\
6 & 1 & & 6 & & 5 & 6 & 6 & 5 & & & & & 8 & .5 \\
8 & 1 & & 8 & & 5 & 8 & & & 8 & & & .5 & 7
\end{bmatrix}
$$
The probability for starting at the root node of the lattice (the empty subgraph \( H_0 \)) and ending at \( H_{11} \) is:

\[
p_{11} = \Pr[s_0 \xrightarrow{\ast} s_{11}]
= (P^\infty)_{0,11}
= ((I - Q)^{-1}R)_{0,11-9}
= ((I - Q^{H_{11}})^{-1}R^{H_{11}})_{0,0}
= .150
\]

0.3 Estimation for Sub-populations

Suppose that we wish to estimate the mean \( \mu_D \) of a study variable \( y_i \) for a sub-population or domain \( D \) of the population \( U \) of all (isomorphism classes of) maximal frequent connected subgraphs, where membership in \( D \) is not known beforehand but must be determined by examining members of a sample drawn from \( U \). This problem arises, for example, if we wish to estimate the average size of code clones having a particular property, e.g., ones involving security-sensitive code. We use this technique to examine the proportion of frequent patterns with more than 8 vertices which are considered to be code clones by the application developer.

Assume that the size \( N_D \) of \( D \) is unknown. Let \( S \) be a sample drawn from \( U \), let \( S_D \) be the part of this sample that belongs to \( D \), and let \( n_D \) be the size of \( S_D \). (Note that \( n_D \) is a random variable.) To estimate the domain total \( \tau_D \), we can use the modified Horvitz Thompson estimator [2]:

\[
\hat{\tau}_D = \sum_{i \in S_D} \frac{y_i}{\pi_i}
\]

where the sum is over \( S_D \) rather than \( S \). To estimate the domain size \( N_D \), we can use the simpler form \( \hat{N}_D = \sum_{i \in S_D} \frac{1}{\pi_i} \). To estimate the domain mean \( \mu_D \), we can use the estimator [2]:

\[
\hat{\mu}_D = \frac{\hat{\tau}_D}{\hat{N}_D}
\]

References
