
Supplemental Material for

Sampling Code Clones from Program

Dependence Graphs with GRAPLE

Tim A. D. Henderson∗ and Andy Podgurski†

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Cleveland, Ohio

This document contains a proof of Theorem 1 from the paper and a worked ex-
ample of the mathematical technique. A few definitions and figures are restated
to add clarity to the proof along with some expanded explanation.

0.1 Formal Definitions

A directed labeled graph (labeled digraph) G is a set of vertices V , a set of edges
E = V × V , and a labeling function which maps vertices (or edges) to labels
l : V |E → L. E can be represented by a matrix E. Ei,j = 1 if and only if there
is an edge from vertex vi to vertex vj , otherwise it is 0.

H is a subgraph of G (H v G), if and only if an injective mapping m : VH →
VG exists such that:

1. All vertices in H map vertices in G with the same label:
∀ v ∈ VH [lH(v) = lG(m(v))]

2. All edges in H are in G:
∀ (u, v) ∈ EH [(m(u),m(v)) ∈ EG]

3. All edge labels match:
∀ (u, v) ∈ EH [lH(u, v) = lG(m(u),m(v))]

Such a mapping m is known as an embedding. A digraph A is isomorphic to
another digraph B, A ∼= B, if A v B and B v A. The isomorphism class of a
subgraph H is the set of all of the subgraphs of G isomorphic to H with distinct
mappings, denoted JHK = {H ′ v G : H ′ ∼= H ∧mH′ 6= mH}.

The subgraph relation · v · induces a connected subgraph lattice LG rep-
resenting all possible ways of constructing G (see Figure 1). LG can itself be
viewed as a directed graph where each vertex u represents a unique connected1

subgraph of G. An edge exists between u and v if adding one edge to u creates

∗tadh@case.edu
†podgurski@case.edu
1In this paper, connected ignores edge direction (see Fig. 2).

1

Figure 1: A connected subgraph lattice. The bottom node of the lattice contains
the graph all other graphs are a subgraph of.

abc

aabc

b

aa

c

a

c

b

c

b c

a

a

b

c

ca

c

c

b

c

c

a

b

c

a

b

c

c bc

c

c

c

b c

c

a subgraph u + ε which is isomorphic to v, v ∼= u + ε. A k-frequent connected
subgraph lattice k-LG contains only those subgraphs which have at least k em-
beddings in G, see Figure 2. Finally, a pattern refers to the isomorphism class
JHK of a subgraph H.

0.2 Computing the Probability of Selecting a Maximal
Subgraph

In order to use the HT estimator outlined in the paper, it is necessary to deter-
mine the probability pi that the ith maximal frequent pattern JHiK is selected
on a random walk of the k-frequent connected subgraph lattice (k-LG). We
compute these probabilities using the theory of Markov chains.

A finite-state Markov chain [1] consists of a finite set of states, S = {s1, . . . , sn},
and a matrix P, called the transition matrix, where Pi,j gives the probability
of a state transition from si to sj . A Markov chain moves from state to state
according to the probabilities in the transition matrix. A random walk in a
graph G can be viewed as a Markov chain whose set of states S corresponds to
the vertex set VG. An absorbing Markov chain [1] is a special type of Markov

2

Figure 2: Figure 2b is a connected subgraph lattice of Figure 2a but only includes
subgraphs with 2 or more embeddings in Figure 2a. The boxed nodes in the
graph show the embeddings of the boxed subgraph in the lattice. The lattice
places subgraphs in a partial order where a subgraph A is less than B if A is a
subgraph of B. (See Section 0.1)

a

b c

bc

a

c

a

b a

bc

c

c

c

a

(a) A labeled directed graph

ab c

a b a c c

b

a

a

b

c

a

a

c

c

b c a

c

c

c

c

a

(b) 2-frequent connected subgraph lat-
tice

chain which always ends in a state that cannot be exited, called an absorbing
state.

To construct an absorbing Markov chain from the lattice k-LG, let the states
of the chain be the vertices of the lattice (i.e., the frequent patterns JHiK). To
model how the algorithm in Listing 1 transitions from one lattice node to the
next by uniformly selecting a neighboring node, let the transition probability
for an edge vi → vj be the reciprocal of the out-degree of vi:

Pi,j =


1∑

k Ei,k
if Ei,j = 1

1 if i = j ∧ vi is maximal
0 otherwise

(1)

The selection probability pi of JHiK is the probability that state si absorbs
the Markov process starting at the bottom lattice node. To compute pi, arrange
the transition matrix P into canonical form such that the transient states come
before the absorbing states:

P =

[TR. ABS.

TR. Q R
ABS. 0 I

]
(2)

Qi,j is the probability of transitioning from a transient state si to transient state
sj . Ri,j is the probability of transitioning from transient state si to absorbing
state st+j where t is the number of transient states. I is the identity matrix

3

Listing 1: GRAPPLE’s sampling procedure

1 # param G : the graph being mined
2 # param bottom : lattice node for the empty subgraph
3 # param min_support : int, minimum number of embeddings
4 # returns : leaf node of the frequent connected subgraph
5 # lattice which is a maximal frequent subgraph
6 def walk(G, bottom, min_support):
7 v = u = bottom
8 while v is not None:
9 u = v

10 v = rand_select(get_children(G, u, min_support))
11 return u
12
13 # param u : a lattice node
14 # returns : a list of lattice nodes which are 1 edge
15 # extensions of u
16 def get_children(G, u, min_support):
17 exts = list()
18 for emb in u.embeddings:
19 for a in embedding.V:
20 for e in G.edges_to_and_from(a):
21 if not emb.has_edge(e):
22 exts.append(emb.extend_with_edge(e))
23 groups = group_isomorphs(exts)
24 return [LatticeNode(lbl, group)
25 for lbl, group in groups.iteritems()
26 if len(group) >= min_support]
27
28 # param subgraphs : a list of subgraphs of G
29 # returns : map label -> list of isomorphic subgraphs.
30 def group_isomorphs(subgraphs):
31 isomorphs = dict()
32 for sg in subgraphs:
33 label = bliss.canonical_label(sg)
34 if label not in isomorphs:
35 isomorphs[label] = list()
36 isomorphs[label].append(sg)
37 return { label: minimum_image_supported(group)
38 for label, group in isomorphs.iteritems() }

and 0 is the zero matrix, as once a Markov process enters an absorbing state it
never leaves. The probability of a process starting at the bottom of the lattice
s0 and being absorbed by state si with zero or more transitions (

?−→) is [1]:

pi = Pr[s0
?−→ si] = (P∞)0,i = ((I−Q)−1R)0,(i−t) = (NR)0,(i−t) (3)

Note, N = (I −Q)−1 is the fundamental matrix for absorbing Markov chains.
It is equivalent to summation of the power series of Q [1].

N = (I−Q)−1 = I + Q + Q2 + Q3 + ... (4)

The term Ni,j is the probability of transitioning from state i to state j after 0
or more steps.

4

0.2.1 Computing pi with a submatrix of P

Lemma 1. Let si be an absorbing state in a Markov chain formed from a
k-frequent connected subgraph lattice of a graph G. The selection probability
pi = (NR)0,(i−t) can be computed from a sub-matrix of the transition matrix P
containing only those states from which si can be reached.

Proof. If there does not exist a path vj
?−→ vi in the k-frequent connected sub-

graph lattice k-LG then the product of its adjacency matrix entries correspond-
ing to any sequence of edges possibly connecting vj to vi must be zero. There-
fore, summing over all such edge sequences, we have:(∞∑

n=1

n∑
k1=1

...

n∑
kn=1

Ej,k1

(
n−1∏
i=1

Eki,ki+1

)
Ekn,i

)
= 0 (5)

The probability of a Markov chain that starts in state sj eventually reaching
state si is

Pr[sj
?−→ si] =

∞∑
n=1

n∑
k1=1

...

n∑
kn=1

Pj,k1

(
n−1∏
i=1

Pki,ki+1

)
Pkn,i (6)

If there does not exist a path in the lattice from vj to vi then this probability is
zero. The selection probability formula pi = (NR)j,(i−t) can be rewritten, with
t indicating the number of transient nodes, as shown in Equation 7.

pi =

t∑
k=1

Nj,kRk,(i−t) (7)

Using the definition of the fundamental matrix this equation can be rewritten
as follows obtaining Equation 11.

pi =

t∑
k=1

(
∞

lim
n=1

(
I +

n∑
e=1

Qe

))
j,k

Rk,(i−t) (8)

pi =

t∑
k=1

(∞∑
n=1

t∑
k1=1

...

t∑
kn=1

Qj,k1

(
n−1∏
x=1

Qkx,kx+1

)
Qkn,kRk,(i−t)

)
(9)

pi =

t∑
k=1

(∞∑
n=1

t∑
k1=1

...

t∑
kn=1

Pj,k1

(
n−1∏
x=1

Pkx,kx+1

)
Pkn,kPk,i

)
(10)

pi =

∞∑
n=1

t∑
k1=1

...

t∑
kn=1

Pj,k1

(
n−1∏
i=1

Pki,ki+1

)
Pkn,i (11)

Note, Equation 11 is equivalent to the right hand side of Equation 6. Since
Pr[sj

?−→ si] = 0 if there is no path in the lattice from vj to vi, vertices from
which si cannot be reached have no effect on the computation of pi and can

5

be omitted. Omitting vertices vj for all vj where there does not exist a path
in the lattice to vi corresponds to removing the jth row and column from P.
Therefore, only a sub-matrix of P containing those states from which si can be
reached are needed.

Lemma 2. The states from which an absorbing state si can be reached in a
Markov chain formed from a k-frequent connected subgraph lattice k-LG corre-
spond to the vertices of the connected subgraph lattice of the graph represented
by state si.

Proof. A vertex v of k-LG represents a graph. Given two vertices u and v of
k-LG, u reaches v if and only if a sequences of edges can be added to u such
that u extended with those edges is isomorphic to v (e.g. u+ ε1 + ε2 + ... ∼= v).
Thus, the statement u reaches v in k-LG is equivalent to saying u is a subgraph
of v. If u is a subgraph of v then it will be a vertex in v’s connected subgraph
lattice Lv by the definition of connected subgraph lattice. Therefore, all states
in which can reach si must be correspond to subgraphs of si and are therefore
in si’s connected subgraph lattice.

Theorem 1. Let JHiK be a maximal k-frequent pattern sampled from k-LG.
Let si be the corresponding state in the Markov chain formed from k-LG. The
selection probability of JHiK, pi = ((I − Q)−1R)0,(i−t), can be computed from
the submatrix of P that includes only the rows and columns that correspond to
subgraphs of Hi.

Proof. By Lemma 2 all states of the Markov chain which can reach si correspond
to subgraphs of si. By Lemma 1 the only rows and columns of P which are
necessary are the rows and columns for states which can reach si. Therefore,
the sub-matrix of P that is needed only contains states which correspond to
subgraphs of Hi and are in the connected subgraph lattice LHi

.

As a consequence of Theorem 1, only a sub-matrix of P is needed to compute
pi for any given i, and that sub-matrix is exactly the one which corresponds to
the connected subgraph lattice computed from the target subgraph.

6

Example 1. The lattice in figure 2 corresponds to the following matrix P ar-
ranged in canonical form. Note: the empty spaces in the matrices represent the
number 0.



0 1 2 3 4 5 6 7 8 9 10 11 12

0 .33 .33 .33
1 .5 .5
2 .25 .25 .25 .25
3 .33 .33 .33
4 1
5 1
6 .5 .5
7 .5 .5
8 .5 .5
9 1
10 1
11 1
12 1


If the subgraph H11 = a → c → c, corresponding to state s11, is sampled the
following would be the submatrix of P needed to compute p11.

PH11 =



0 2 3 6 8 11

0 .33 .33
2 .25
3 .33 .33
6 .5
8 .5
11 1


The fundamental submatrix would be:

NH11 = (I−QH11)−1 =



0 2 3 6 8

0 1 .33 .33 .1914 .1089
2 1 .25
3 1 .33 .33
6 1
8 1


Computing NH11RH11 yields:

NH11RH11 =



0 2 3 6 8

0 1 .33 .33 .1914 .1089
2 1 .25
3 1 .33 .33
6 1
8 1




11

0

2

3

6 .5
8 .5

 =



11

0 .150
2 .125
3 .333
6 .5
8 .5



7

The probability for starting at the root node of the lattice (the empty subgraph
H0) and ending at H11 is:

p11 = Pr[s0
?−→ s11]

= (P∞)0,11

= ((I−Q)−1R)0,11−9

= ((I−QH11)−1RH11)0,0

= .150

0.3 Estimation for Sub-populations

Suppose that we wish to estimate the mean µD of a study variable yi for a
sub-population or domain D of the population U of all (isomorphism classes of)
maximal frequent connected subgraphs, where membership in D is not known
beforehand but must be determined by examining members of a sample drawn
from U . This problem arises, for example, if we wish to estimate the average
size of code clones having a particular property, e.g., ones involving security-
sensitive code. We use this technique to examine the proportion of frequent
patterns with more than 8 vertices which are considered to be code clones by
the application developer.

Assume that the size ND of D is unknown. Let S be a sample drawn from
U , let SD be the part of this sample that belongs to D, and let nD be the size
of SD. (Note that nD is a random variable.) To estimate the domain total τD
we can use the modified Horvitz Thompson estimator [2]:

τ̂D =
∑
i∈SD

yi
πi

(12)

where the sum is over SD rather than S. To estimate the domain size ND, we
can use the simpler form N̂D =

∑
i∈SD

1
πi

. To estimate the domain mean µD,
we can use the estimator [2]:

µ̂D =
τ̂D

N̂D
(13)

References

[1] Grinstead, C. M., and Snell, J. L. Introduction to Probability, 2 ed.
American Mathematical Society, Providence, RI, 1997.

[2] Särndal, C.-E., Swensson, B., and Wretman, J. Model Assisted Sur-
vey Sampling. Springer-Verlag, 1992.

8

