
Evaluating Automatic Fault Localization Using
Markov Processes

Tim A. D. Henderson,
Google Inc.

1600 Amphitheatre Pkwy
Mountain View, California, USA 94043

tadh@google.com

Yiğit Küçük∗, and Andy Podgurski†
Dept. of Computer and Data Sciences

Case Western Reserve University
Cleveland, Ohio, USA 44106

∗yigit.kucuk@case.edu †podgurski@case.edu

Abstract—Statistical fault localization (SFL) techniques are
commonly compared and evaluated using a measure known as
“Rank Score” and its associated evaluation process. In the latter
process each SFL technique under comparison is used to produce
a list of program locations, ranked by their suspiciousness
scores. Each technique then receives a Rank Score for each
faulty program it is applied to, which is equal to the rank
of the first faulty location in the corresponding list. The SFL
technique whose average Rank Score is lowest is judged the
best overall, based on the assumption that a programmer will
examine each location in rank order until a fault is found.
However, this assumption oversimplifies how an SFL technique
would be used in practice. Programmers are likely to regard
suspiciousness ranks as just one source of information among
several that are relevant to locating faults. This paper provides
a new evaluation approach using first-order Markov models of
debugging processes, which can incorporate multiple additional
kinds of information, e.g., about code locality, dependences, or
even intuition. Our approach, HTRank, scores SFL techniques
based on the expected number of steps a programmer would take
through the Markov model before reaching a faulty location. Un-
like previous evaluation methods, HTRank can compare techniques
even when they produce fault localization reports differing in
structure or information granularity. To illustrate the approach,
we present a case study comparing two existing fault localization
techniques that produce results varying in form and granularity.

Index Terms—statistical fault localization, coverage-based fault
localization, suspicious-behavior-based fault localization, evalua-
tion of fault localization techniques, Markov model, hitting-time
rank score.

I. INTRODUCTION

Automatic fault localization is a software engineering tech-
nique to assist a programmer during the debugging process by
suggesting “suspicious” locations that may contain or overlap
with a fault (bug, defect) that is the root cause of observed
failures. The big idea behind automatic fault localization (or
just fault localization) is that pointing the programmer towards
the right area of the program will enable them to find the
relevant fault more quickly.

A much-investigated approach to fault localization is
Coverage-Based Statistical Fault Localization (CBSFL),
which is also known as Spectrum-Based Fault Localization [1],
[2], [3]. This approach uses code-coverage profiles and suc-
cess/failure information from testing or field use of software to
rank statements or other generic program locations (e.g., basic

blocks, methods, or classes) from most “suspicious” (likely to
be faulty) to least suspicious. To perform CBSFL, each test
case is run using a version of the program being debugged that
has been instrumented to record which potential fault locations
were actually executed on that test. A human or automated test
oracle labels each test to indicate whether it passed or failed.
The coverage profiles are also referred to as coverage spectra.

In the usage scenario typically envisioned for CBSFL, a
programmer uses the ranked list of program locations to guide
debugging. Starting at the top of the list and moving down,
they examine each location to determine if it is faulty. If the
location of a fault is near the top of the list, the programmer
saves time by avoiding consideration of most of the non-faulty
locations in the program. However, if there is no fault near the
top of the list, the programmer instead wastes time examining
many more locations than necessary. CBSFL techniques are
typically evaluated empirically in terms of their ability to rank
faulty locations near the top of the list [4], [5], as measured
by each technique’s “Rank Score”, which is the location of
the first faulty location in the list. A CBSFL technique that
consistently ranks faulty statements from a wide range of
faulty programs near the top of the corresponding lists is
considered a good technique.

One pitfall of using the ranked-list evaluation regime out-
lined above is that it can be applied fairly only when the
techniques being compared provide results as a prioritized
list of program elements of the same granularity. This means
that if technique A produces a prioritized list of basic blocks,
technique B produces an unordered set of sub-expressions,
and technique C produces a prioritized list of classes then
it is not valid to use the Standard Rank Score to compare
them. The Standard Rank Score can only be applied to
ordered lists and thus cannot be used directly to evaluate
technique B, and it requires the techniques being compared to
have the same granularity. Our new evaluation metric (called
HTRank) accounts for these differences in granularity and report
construction, allowing a direct comparison between different
styles of fault localization. We present a case study in Section
IV comparing behavioral fault localization (which produces
fragments of the dynamic control flow graph) to standard
CBSFL.

Second, it is evident that the imagined usage scenario for

CBSFL, in which a programmer examines each possible fault
location in rank order until a fault is found, is an oversimplifi-
cation of programmer behavior [6]. Programmers are likely
to deviate from this scenario, e.g.: by choosing not to re-
examine locations that have already been carefully examined
and have not changed; by examining the locations around a
highly ranked one, regardless of their ranks; by examining
locations that a highly ranked location is dependent upon or
that are dependent upon it [7]; by employing a conventional
debugger (such as gdb, WinDB, or Visual Studio’s debugger);
or simply by using their knowledge and intuition about the
program.

To support more flexible and nuanced evaluation crite-
ria for CBSFL and other fault localization techniques, we
present a new approach to evaluating them that is based
on constructing and analyzing first-order Markov models of
debugging processes and that uses a new evaluation metric
(HTRank) based on the “hitting time” of a Markov process. This
approach allows researchers to directly compare different fault
localization techniques by incorporating their results and other
relevant information into an appropriate model. To illustrate
the approach, we present models for two classes of fault lo-
calization techniques: CBSFL and Suspicious Behavior Based
Fault Localization (SBBFL) [8], [9]. The models we present
are also easy to update, allowing researchers to incorporate
results of future studies of programmers’ behavior during
debugging.

Our new debugging model (and its HTRank metric) can
be thought of as a first-order simulation of the debugging
process as conducted by a programmer. As such, we intend
for it to be a practical alternative to conducting an expensive
user study. The model is capable of incorporating a variety
of behaviors a programmer may exhibit while debugging,
allowing researchers to evaluate the performance of their tool
against multiple debugging “styles.”

II. BACKGROUND AND RELATED WORK

Coverage Based Statistical Fault Localization (CBSFL) [1],
[4] techniques attempt to quantify the likelihood that individual
program locations are faulty using sample statistics, called
suspiciousness metrics or fault localization metrics, which are
computed from PASS/FAIL labels assigned to test executions
and from coverage profiles (coverage spectra) collected from
those executions. A CBSFL suspiciousness metric (of which
there are a great many [2], [3]) measures the statistical
association between the occurrence of test failures and the
coverage of individual program locations (program elements)
of a certain kind.

Some statistical fault localization techniques use additional
information beyond basic coverage information to either im-
prove accuracy or provide more explainable results. For in-
stance, work on Causal Statistical Fault Localization uses
information about the execution of program dependence pre-
decessors of a target statement to adjust for confounding
bias that can distort suspiciousness scores [10]. By contrast,

Suspicious-Behavior-Based Fault Localization (SBBFL) tech-
niques use runtime control-flow information (the behavior)
to identify groups of “collaborating” suspicious elements [9].
These techniques typically leverage data mining techniques
[11] such as frequent pattern mining [12], [13], [14] or
significant pattern mining [15], [9]. Unlike CBSFL techniques,
SBBFL techniques output a ranked list of patterns (subgraphs,
itemsets, trees) which each contain multiple program locations.
This makes it difficult to directly compare SBBFL and CBSFL
techniques using traditional evaluation methods.

Finally, a variety of non-statistical (or hybrid) approaches
to fault localization have been explored [16], [17], [18],
[19]. These approaches range from delta debugging [20] to
nearest neighbor queries [7] to program slicing [21], [22] to
information retrieval [23], [24], [25] to test case generation
[26], [27], [28]. Despite technical and theoretical differences
in these approaches, they all suggest locations (or groups of
locations) for programmers to consider when debugging.

A. The Tarantula Evaluation

Some of the earliest papers on fault localization do not
provide a quantitative method for evaluating performance (as
is seen in later papers [5]). For instance, the earliest CBSFL
paper [1], by Jones et al., proposes a technique and evaluates
it qualitatively using data visualization. At the time, this
was entirely appropriate as Jones was proposing a technique
for visualizing the relative suspiciousness of different state-
ments, as estimated with what is now called a suspiciousness
metric (Tarantula). The visualization used for evaluating this
technique aggregated the visualizations for all of the subject
programs included in the study.

While the evaluation method used in the Jones et al. paper
[1] effectively communicated the potential of CBSFL (and
interested many researchers in the idea) it was not good way
to compare multiple fault localization techniques. In 2005
Jones and Harrold [4] published a study that compared their
Tarantula technique to three other techniques: Set Union and
Intersection [29], Nearest Neighbor [7], and Cause-Transitions
[30]. These techniques involved different approaches toward
the fault localization problem and originally had been evalu-
ated in different ways. Jones and Harrold re-evaluated all of
the techniques under a new common evaluation framework.

In their 2005 paper, Jones and Harrold evaluated the ef-
fectiveness of each fault localization technique by using it to
rank the statements in each subject program version from most
likely to be the root cause of observed program failures to
least likely. For their technique Tarantula, the statements were
ranked using the Tarantula suspiciousness score.1 To compare
the effectiveness of the techniques, another kind of score was
assigned to each faulty version of each subject program. This
score is based on the “rank score”:

1Jones et al. did not use the term “suspiciousness score” or “suspiciousness
metric” in their 2002 paper [1]. They introduced the term “suspiciousness
score” in their 2005 paper [4], in the context of ranking statements. Both
terms are now in common use.

Definition 1 (Tarantula Rank Score [4]). Given a set of
locations L with their suspiciousness scores s(l) for l ∈ L
the Rank Score r(l) for a faulty location l ∈ L is:

|{x : x ∈ L ∧ s(x) ≥ s(l)}|

For Set Union and Intersection, Nearest Neighbor, and Cause-
Transitions, Jones and Harrold used an idea of Renieres
and Reiss [7] and ranked a program’s statements based on
consideration of its System Dependence Graph (SDG) [31].
The surrogate suspiciousness score of a program location L
is the inverse of the size of the smallest dependence sphere
around L that contains a faulty location. The surrogate scores
are then used to calculate the Tarantula Rank Score (Def. 1).

In Jones’s and Harrold’s evaluation the authors did not use
the Tarantula Rank Score directly but instead used a version
of it that is normalized by program size:

Definition 2 (Tarantula Effectiveness Score (Expense) [4]).
This score is the proportion of program locations that do not
need to be examined to find a fault when the locations are
examined in rank order. Formally, let n be the total number of
program locations, and let r(f) be the Tarantula Rank Score
(Def. 1) of the faulty location f . Then the score is:

n− r(f)

n

Using the normalized effectiveness score, Jones and Harrold
directly compared the fault localization effectiveness of the
techniques they considered. They did this in two ways. First,
they presented a table that bucketed all the buggy versions of
all the programs by their Tarantula Effectiveness Scores (given
as percentages). Second, they presented a figure that showed
the same data as a cumulative curve.

The core ideas of Jones’ and Harrold’s Effectivness/Expense
score now underlie most evaluations of CBSFL techniques.
Faulty statements are scored, ranked, rank-scored, normalized,
and then aggregated over all programs and versions to provide
an overall representation of a fault localization method’s
performance (e.g., [32], [33], [2], [34], [3], [35]). However,
some refinements have been made to both the Rank Score and
the Effectiveness Score.

B. The Implied Debugging Models

It is worth (re)stating here the debugging model implied
in the Jones and Harrold evaluation [4]. The programmer
receives from the fault localization tool a ranked list of
statements with the most suspicious statements at the top.
The programmer then moves down the list examining each
location in turn. If multiple statements have the same rank
(the same suspiciousness score) all of those statements are
examined before the programmer makes a determination on
whether or not the bug has been located. This rule is captured
in the mathematical definition of the Tarantula Rank Score
(Definition 1).

For the non-CBSFL methods which Jones compared CBSFL
against, the ranks of the program locations were once again
compared using the method of Renieres and Reiss [7], [30],

[36] which is sometimes called T-Score. As a reminder, this
method computes a surrogate suspiciousness score based on
the size of smallest dependence sphere2 centered around the
locations indicated in the fault localization report that contain
the faulty code. This implies a debugging model in which the
programmer examines each “shell” of the dependence sphere
in turn before moving onto the next larger shell (see Figure 7
in [30] for a visualization).

Neither of these debugging models are realistic. Program-
mers may be reasonably expected to deviate from the ordering
implied by the ranking. During the debugging process a
programmer may use a variety of information sources — in-
cluding intuition — to decide on the next element to examine.
They may examine the same element multiple times. They
may take a highly circuitous route to the buggy code or via
intuition jump immediately to the fault. The models described
above allow for none of these subtleties.

C. Refinements to the Evaluation Framework

Wong et al. [33] introduced the most commonly used
effectiveness score, which is called the EXAM score. This
score is essentially the same as the Expense score (Def. 2)
except that it gives the percentage of locations that need to be
examined rather than those avoided.

Definition 3 (EXAM Score [33]).
r(f)

n

Ali et al. [38] identified an important problem with Jones’
and Harrold’s evaluation method: some fault localization tech-
niques always assign different locations distinct suspiciousness
scores, but others do not. Ali et al. pointed out that when
comparing techniques, the Tarantula Effectiveness Score may
favor a technique that generates more distinct suspiciousness
scores than the other techniques. The fix they propose is to
assign to a location in a group of locations with the same
suspiciousness score a rank score that reflects developers
having to examine half the locations in the group on average.

Definition 4 (Standard Rank Score). This score is the expected
number of locations a programmer would inspect before
locating a fault. Formally, given a set of locations L with
their suspiciousness scores s(l) for l ∈ L, the Rank Score for
a location l ∈ L is [38]:

|{x : x ∈ L ∧ s(x) > s(l)}|+ |{x : x ∈ L ∧ s(x) = s(l)}|
2

Note: when we refer to the “Standard Rank Score” this is the
definition we are referring to.

Parnin and Orso [6] conducted a study of programmers’
actual use of a statistical fault localization tool (Tarantula

2A dependence sphere is computed from the Program Dependence Graph
(PDG) [37], [31]. In a PDG, program elements are nodes and their control
and data dependencies are represented as edges. Given two nodes α and β
a graph with a shortest path (ignoring edge directionality) π between them,
the sphere is all those nodes in the graph have have a path from α as short
(or shorter) than π (once again ignoring edge directionality).

[1]). One of their findings was that programmers did not
look deeply through the ranked list of locations and would
instead only consider the first few locations. Consequently,
they encouraged researchers to no longer report effective-
ness scores as percentages. Most CBSFL studies now report
absolute (non-percentage) rank scores. This is desirable for
another reason: larger programs can have much larger absolute
ranks than small programs, for the same percentage rank.
Consider, for instance a program with 100,000 lines. If a fault’s
Rank Score is 10,000 its percentage Exam Score would be
10%. A 10% Exam Score might look like a reasonably good
localization (and would be if the program had 100 lines) but no
programmer will be willing to look through 10,000 lines. By
themselves, percentage evaluation metrics (like Exam Score)
produce inherently misleading results for large programs.

Steimann et al. [32] identified a number of threats to validity
in CBSFL studies, including: heterogeneous subject programs,
poor test suites, small sample sizes, unclear sample spaces,
flaky tests, total number of faults, and masked faults. For
evaluation they used the Standard Rank Score of Definition
4 modified to deal with k faults tied at the same rank.

Definition 5 (Steinmann Rank Score). This score is the
expected number of locations a programmer would inspect
before finding a fault when multiple faulty statements may have
the same rank. Formally, given a set of locations L with their
suspiciousness scores s(l) for l ∈ L, the Rank Score for a
location l ∈ L is [32]:

|{x : x ∈ L ∧ s(x) > s(l)}|

+
|{x : x ∈ L ∧ s(x) = s(l)}|+ 1

|{x : x ∈ L ∧ s(x) = s(l) ∧ x is a faulty location}|+ 1

Moon et al. [39] proposed Locality Information Loss (LIL)
as an alternative evaluation framework. LIL models the local-
ization result as a probability distribution constructed from the
suspiciousness scores:

Definition 6 (LIL Probability Distribution). Let τ be a
suspicious metric normalized to the [0, 1] range of reals.
Let n be the number of locations in the program and let
L = {l1, . . . , ln} be the set of locations. The constructed
probability distribution is given by:

Pτ (li) =
τ(li)∑n
j=1 τ(lj)

LIL uses the Kullback-Leibler measure of divergence between
distributions to compute a score indicating how different the
distribution constructed for a suspiciousness metric of interest
is from the distribution constructed from an “ideal” metric,
which gives a score of 1 to the faulty location(s) and gives
negligible scores to every other location. The advantage of the
LIL framework is that it does not depend on a list of ranked
statements and can be applied to non-statistical methods (using
a synthetic τ). The disadvantage of LIL is that it does not
reflect programmer effort (as the Rank Scores do). However, it
may be a better metric to use when evaluating fault localization
systems as components of automated fault repair systems.

Pearson et al. [5] re-evaluated a number of previous results
using new real world subject programs with real defects
and test suites. In contrast to previous work they made use
of statistical hypothesis testing and confidence intervals to
characterize the uncertainty of the results. To evaluate the
performance of each technique under study they used the
EXAM score, reporting best, average, and worst case results
for multi-statement faults.

III. A NEW APPROACH TO EVALUATION

Programmers consider multiple sources of information
when performing debugging tasks and use them to guide
their exploration of the source code. In our new approach
to evaluating fault localization techniques, a model is con-
structed for each technique T and each program P of how a
programmer using T might move from examining one location
in P to examining another. The model for T and P is used
to compute a statistical estimate of the expected number of
moves a programmer using T would make before encountering
a fault in P . This estimate is used to compute a “hitting-time
rank score” for technique T . The scores for all the techniques
can then be compared to determine which performed best on
program P . This section presents the general approach and
specific example models. The models make use of CBSFL
reports and information about static program structure and
dynamic control flow.

In order to support very flexible modeling and tractable
analysis of debugging processes, we use first-order Markov
chains (described below) to model them. Our first example
models the debugging process assumed in previous work,
in which a programmer follows a ranked list of suspicious
program locations until a fault is found. Then we describe
how to incorporate structural information about the program
(which could influence a programmer’s debugging behav-
ior). Finally, we show how to model and compare CBSFL
to a recent Suspicious Behavioral Based Fault Localization
(SBBFL) algorithm [9] that identifies suspicious subgraphs of
dynamic control flow graphs. This third model demonstrates
the flexibility of our approach and could be adapted to evaluate
other SBBFL techniques [40], [41], [42], [8], [43], [44], [45],
[46], [47], [48]. It also demonstrates that our approach can be
used to compare statistical and non-statistical fault localization
techniques under the same assumptions about programmer
debugging behavior.

It is important to emphasize that the quality and value of the
evaluation results obtained with our approach depend primarily
on the appropriateness of the model of the debugging process
that is created. This model represents the evaluators’ knowl-
edge about likely programmer behavior during debugging and
the factors that influence it. To avoid biasing their evaluation,
evaluators must commit to an evaluation model and refrain
from “tweaking” it after applying it to the data. [49].

A. Background on Ergodic Markov Chains

A finite state Markov chain consists of a set of states
S = {s1, s2, ..., sn} and an n × n matrix P, called the

score = .98 score = .97 score = .95 score = .94

start

8/18

1/18

Node.String (3)

1/6

Node.Verify (4)

1/6

Node.Has (2)

1/6

8/18
1/18

Node.Has (6)

1/4

Node.Has (4)

1/4

8/18
1/18

Node.Has (3)

1/2

8/18

1/18

Scanner.Scan (24)

1/6

main (1)

1/6

Node.Verify (0)

1/61 1 1 1 1 1 1 1 1

Fig. 1: A simplified version of the Markov model for evaluating the ranked list of suspicious locations for the bug in Listing
1.

start

8/18

1/18

Node.String (3)

1/6

Node.Verify (4)

1/6

Node.Has (2)

1/6

8/18
1/18

Node.Has (6)

1/4

Node.Has (4)

1/4

8/18
1/18

Node.Has (3)

1/2

8/18

1/18

Scanner.Scan (24)

1/6

main (1)

1/6

Node.Verify (0)

1/61 1/2 1/21/2

1/6

1/6

1/2

1/6

1/2

1/6

1/6

1/2
1/6

1 1 1/2

Fig. 2: An example Markov model showing how “jump” edges can be added to represent how a programmer might examine
locations which are near the location they are currently reviewing. Compare to Figure 1.

transition matrix [50]. Entry Pi,j gives the probability for a
Markov process in state si to move to state sj . The probability
of a Markov process moving from one state to another only
depends on the state the process is currently in. This is known
as the Markov property.

A Markov chain is said to be ergodic if, given enough
steps, it can move from any state si to any state sj , i.e.
Pr

[
si
∗−→ sj

]
> 0. Thus, there are no states in an ergodic

chain that the process can never leave.
Ergodic Markov chains have stationary distributions. Let v

be an arbitrary probability vector. The stationary distribution
is a probability vector w such that

lim
n→∞

vPn = w

The vector w is a fixed point on P implying wP = w.
Stationary distributions give the long term behavior of a
Markov chain – meaning that after many steps the chance
a Markov process ends in state si is given by wi.

The expected hitting time of a state in a Markov chain is
the expected number of steps (transitions) a Markov process
will make before it encounters the state for the first time. Our
new evaluation metric (HTRank) uses the expected hitting time
of the state representing a faulty program location to score
a fault localization technique’s performance. Lower expected
hitting times yield better localization scores.

Definition 7 (Expected Hitting Time). Consider a Markov
chain with transition matrix P. Let Ti,j be a random variable
denoting the time at which a Markov process that starts at
state si reaches state sj . The expected hitting time (or just
hitting time) of state sj for such a process is the expected

1 func (n *Node) Has(k int) bool {
2 if n == nil {
3 return false
4 ++ } else if k == n.Key {
5 -- } else if k != n.Key {
6 return true
7 } else if (k < n.Key) {
8 return n.left.Has(k)
9 } else {

10 return n.right.Has(k)
11 }
12 }

Listing 1: A bug in the implementation of the Has method of
an AVL tree.

TABLE I: REDUCED CBSFL RESULTS FOR LISTING 1

rank R. F1 Function (Basic Block) rank R. F1 Function (BB)
1.5 0.98 Node.Has (2) 6 0.95 Node.Has (3)
1.5 0.98 Node.String (3) 7.5 0.94 main (1)
1.5 0.98 Node.Verify (4) 7.5 0.94 Scanner.Scan (24)
4 0.97 Node.Has (4) 7.5 0.94 Node.Verify (0)
4 0.97 Node.Has (6)

value of Ti,j

E [Ti,j] =

∞∑
k=1

k · Pr [Ti,j = k]

In general, a hitting time for a single state may be computed
in O(n3) steps [51]. Somewhat less time is required for
sparse transition matrices [52]. Chapter 11 of Grinstead and
Snell [50] provides an accessible introduction to hitting time
computation.

Some programs may have too many elements for exact
hitting time computations (our case study contains one such
program). To deal with large programs the expected hitting
time can also be estimated by taking repeated random walks
through the Markov chain to obtain a sample of hitting times.

The sample can then be used to estimate the expected hitting
time by computing the sample mean.3

B. Expected Hitting Time Rank Score (HTRank)

This section introduces our new evaluation metric HTRank.
HTRank produces a “rank score” similar to the score produced
by the Standard Rank Score of Definition 4. In the standard
score, program locations are ranked by their CBSFL suspi-
ciousness scores. A location’s position in the ordered list is
that location’s Rank Score (see the definition for details).

The new HTRank score is obtained as follows:
1) A Markov debugging model is supplied (as a Markov

chain).
2) The expected hitting times (Def. 7) for each location in

the program are computed.
3) The locations are ordered by their expected hitting times.
4) The HTRank for a location is its position in the ordered

list.

Definition 8 (HTRank). Given a set of locations L and a
Markov chain (S,P) that represents the debugging process
and has start state 0, the Hitting-Time Rank Score HTRank for
a location l ∈ L ∩ S is:

|{x : x ∈ L ∩ S ∧ E [T0,x] < E [T0,l]}|+
|{x : x ∈ L ∩ S ∧ E [T0,x] = E [T0,l]}|

2

Note: this is almost identical to Definition 4, but it replaces the
suspiciousness score with the expected hitting time. Definition
5 can also be modified in a similar way for multi-fault
programs.

C. Markov Debugging Models

HTRank is parameterized by a “debugging model” expressed
as a Markov chain. As noted above, a Markov chain is made
up a of set of states S and transition matrix P. In a debugging
model, there are two types of states: 1) textual locations in the
source code of a program and 2) synthetic states. Figures 1
and 2 show examples of debugging models constructed for
an implementation of an AVL tree. In the figures, the square
nodes are Markov states representing basic blocks in the
source code. (Note that CBSFL techniques typically compute
the same suspiciousness score for all statements in a basic
block.) The smaller, circular nodes are Markov states which
are synthetic. They are there for structural reasons but do not
represent particular locations in the source code. The edges in
the graphs represent possible transitions between states, and
they are annotated with transition probabilities. All outgoing
edges from a node should sum to 1.

In a Markov debugging model a programmer is represented
by the Markov process. When the Markov process is simulated
the debugging actions of a programmer are being simulated.
This is a “first order” simulation, which means the actions of
the simulated programmer (Markov process) only depend on

3Implementations of these two computations maybe found in
https://github.com/timtadh/expected-hitting-times.

the current location being examined. Thus, the Markov model
provides a simple and easy-to-construct mathematical model
of a programmer looking through the source code of a program
to find the faulty statement(s). The simulated programmer
begins at some starting state and moves from state to state until
the faulty location is found. We require that all Markov models
are ergodic, ensuring that every state (program location) is
eventually reachable in the model.

D. An Extensible Markov Model for CBSFL
As described in Section II a CBSFL report is made up

of a ranked list of locations in the subject program. Our
extensible Markov model includes a representation of the
CBSFL ranked list. By itself, using HTRank with a Markov
model of a ranked list is just a mathematically complex way
of restating Definition 4. However, with a Markov model
of a CBSFL report in hand we can add further connections
between program locations (represented as Markov states)
to represent other actions a programmer might take besides
traversing down the ranked list. For instance, in Section III-D2
we note that programmers use graphical debuggers to traverse
the dynamic control flow in a program – allowing them to
visit statements in the order they are executed. We embed the
dynamic control flow graph into the transition matrix of the
Markov model to reflect this observation.

1) A Ranked List as a Markov Chain: Figure 1 provides a
graphical example of a Markov chain for a ranked list. Since
the nodes in a graphical representation of a Markov chain
represent states and the edges represent the transition matrix,
the probabilities associated with outgoing edges of each node
should sum to 1. In Figure 1, each circular node represents
a rank in the list and the square nodes represent associated
program locations, which are identified by their function
names and static basic-block id number. The square nodes
that are grouped together all have the same suspiciousness
scores. We will provide here a brief, informal description of
the structure of the transition matrix. A formal description of
the chain is provided in Definition 10 in the Appendix. The
exact choice of transition matrix in the formal chain was driven
by a proof of equivalence between HTRank with this Markov
model (as defined in Definition 10) and the Standard Rank
Score (Definition 4).4

The transition matrix boils down to a couple of simple
connections. The nodes representing groups form a doubly
linked list (see the circular nodes in Figure 1). The ordering
of the “group nodes” matches the ordering of the ranks in
the ranked list. The links between the node are weighted so
that a Markov process will tend to end up in a highly ranked
node. More formally, the model was constructed so that if you
ordered the Markov states by the probabilities in the stationary
distribution (which characterizes the long term behavior of the
Markov process) from highest to lowest that ordering would
match the order of the ranked list.

The second type of connection is from a group node to
its program location nodes. Each location node connects to

4See https://hackthology.com/pdfs/scam-2019-supplement.pdf

exactly one group node. The transition probabilities (as shown
in Figure 1) are set up such that there is an equal chance of
moving to any of the locations in the group.

The final connection is from a location node back to its
group node. This is always assigned probability 1 (see Figure
1). Again, see Definition 10 in the Appendix for the formal
description.

2) Adding Local Jumps to the CBSFL Chain: Figure 2
shows a modified version of the model in Figure 1. The
modified model allows the Markov process to jump or “tele-
port” between program locations which are not adjacent in
the CBSFL Ranked List. These “jump” connections are setup
to model other ways a programmer might move through the
source code of a program when debugging (see below). In the
figure, these jumps are shown with added red and blue edges.
For the Markov model depicted in the figure, the Markov
process will with probability 1

2 move back to the rank list and
with probability 1

2 teleport or jump to an alternative program
location that is structurally adjacent (in the program’s source
code) to the current one.

Informally, the modified model is set up so that if the
Markov process is in a state si which represents program
location lx it will with probability pjump move to a state sj
which represents program location ly instead of returning to
the rank list. The locations that the process can move to
from si are defined in a jump matrix J which is parameter
to the Markov model. The matrix J encodes assumptions
or observations about how programmers behave when they
are debugging. A formal definition of the CBSFL chain with
jumps is presented in the Appendix (see Definition 11).

Definition 9 defines one general-purpose jump matrix J. It
encodes two assumptions about programmer behavior. First,
when a programmer considers a location inside a function they
will also potentially examine other locations in that function.
Second, when a programmer is examining a location they
may examine locations preceding or succeeding it the dynamic
control flow (e.g., with the assistance of a graphical debugger).
Definition 9 encodes both assumptions by setting the relevant
Ji,j entries to 1.

Definition 9 (Spacial + Behavioral Jumps).

Ji,j =



1 if si and sj represent locations
in the same function

1 if si and sj are adjacent locations in the
program’s dynamic control flow graph

0 otherwise

In addition to J, the new chain is parameterized by the
probability pjump of a jump occurring when the process visits
a state representing a program location. As pjump → 0 the
transition matrix of new chain approaches the transition matrix
for the chain in Definition 10 (see the Appendix). We suggest
setting pjump to 0.5 in the absence of data from a user study.

E. Modeling SBBFL

As noted earlier, Markov models can be constructed for
alternative fault localization techniques. Suspicious Behavior
Based Fault Localization (SBBFL) [8], [9] techniques return
a report containing a ranked list of subgraphs or subtrees.
Each subgraph contains multiple program locations usually
drawn from a dynamic control flow graph of the program.
Comparing this output to CBSFL using the Standard Rank
Score can be difficult as a location may appear multiple
times in graphs returned by the SBBFL algorithm. However,
HTRank can produce an accurate and comparable score by
utilizing the expected hitting times of the states representing
the faulty location. Definition 12 in the Appendix provides
an example Markov chain which models a ranked list of
suspicious subgraphs. It can be extended (not shown due to
space constraints) to add a Jump matrix in the manner of
Definition 11 (see the Appendix).

IV. CASE STUDY

To illustrate our new approach to evaluation, we performed
a case study in which it was used to evaluate several fault
localization techniques of two different types: CBSFL [4], [3]
and Suspicious-Behavior-Based Fault Localization (SBBFL)
[8], [9]. We investigated the following research questions:
• RQ1: How Accurate is HTRank Estimation? (Table III)
• RQ2: Does it make a difference whether HTRank or the

Standard Rank Score is used? (Table IV, Figs. 3 and 4)
We also considered an important general question about fault
localization that a typical research study might investigate.
• RQ3: Which kind of fault localization technique performs

better, SBBFL or CBSFL? (Table IV)
In order to use an SBBFL technique, more complex profiling

data (dynamic control flow graphs or DCFGs) are needed than
for CBSFL (which requires only coverage data). Therefore,
a more specialized profiler was required for this study. We
used Dynagrok (https://github.com/timtadh/dynagrok) [9] – a
profiling tool for the Go Programming Language. We also
reused subject programs used in a previous study [9] (see
Table II). They are all real-world Go programs of various sizes
that were injected with mutation faults. The test cases for the
programs are all either real-world inputs or test cases from
the system regression testing suites that are distributed with
the programs. Six representative suspiciousness metrics were
considered: Ochiai, F1, Jaccard, Relative Ochiai, Relative F1,
and Relative Jaccard [3]. These measures were all previously
adapted to the SBBFL context [9].

All applications of techniques were replicated to address
random variation in the results as the SBBFL algorithm that we
used employs sampling [9]. The results from the replications
were averaged and, unless otherwise noted, the average Rank
Scores are presented. Finally, the exact HTRank score was
computed for 4 of the 5 programs. For the fifth program,
the Go compiler, although HTRank can be computed exactly,
this requires so much time for each run to complete (≈
4 hours) that it precluded computing exact results for each

TABLE II: DATASETS USED IN THE EVALUATION

Program L.O.C. Mutants Description

AVL (github.com/timtadh/dynagrok) 483 19 An AVL tree
Blackfriday (github.com/russross/blackfriday) 8,887 19 Markdown processor
HTML (golang.org/x/net/html) 9,540 20 An HTML parser
Otto (github.com/robertkrimen/otto) 39,426 20 Javascript interpreter
gc (go.googlesource.com/go) 51,873 16 The Go compiler

Note: The AVL tree is in the examples directory.

TABLE III: HTRANK ESTIMATION ERROR

Subject Program avl blackfriday html otto
mean % error 2.4% 3.1% 3.7% 3.1%
median % error 1.0% 0.3% 1.6% 0.2%
stdev % error 3.8% 12.1% 6.3% 9.9%
p-value 0.781 0.469 0.473 0.476

Percentage error of the estimated HTRank versus the exact HTRank (see note
under Def 7). Letting y be the exact HTRank and ŷ be the estimated HTRank,
the percentage error is |ŷ−y|

y
∗ 100.

program version (including all models for both SBBFL and
CBSFL). Therefore, expected hitting times for the Go compiler
were estimated using the method outlined in Section III-A.
Specifically, we collected 500 samples of hitting times of
all states in the Markov debugging model by taking random
walks (with a maximum walk length of 1,000,000 steps). The
expected hitting times were estimated by taking the sample
mean.

A. The Chosen HTRank Model

To avoid bias, it was important to choose the HTRank model
before the case study was conducted, which we did. We used
HTRank with jumps (Definition 11) together with the jump
matrix specified in Definition 9. We chose this matrix because
we believe the order in which programmers examine program
elements during debugging is driven in part by the structure
of the program, even when they are debugging with the
assistance of a fault localization report. The pjump probability
was set to 0.5 to indicate an equal chance of the programmer
using or not using the fault localization report. A future large
scale user study could empirically characterize the behavior
of programmers while performing debugging to inform the
choice of the pjump parameter. However, without such a study
it is reasonable to use 0.5, which indicates “no information.”

B. RQ1: How Accurate is HTRank Estimation?

For large programs the cost of computing the expected
hitting times for HTRank may be too high. Therefore, we
have suggested estimating the expected hitting times (see note
under Definition 7). To assess the accuracy of estimating
the expected hitting time instead of computing it exactly,
we did both for four subject programs, using the Relative
F1 measure. For each program version, SFL technique, and
Markov chain type the estimation error was computed as a
percentage of the true value. Table III presents descriptive
statistics characterizing these errors for each subject program.
The last row of the table gives p-values from a independent
two-sample T-test comparing the estimated HTRank values
and the exact HTRank values. The null hypothesis is that the
expected estimate HTRank is the same as the expected exact

TABLE IV: FAULT LOCALIZATION PERFORMANCE

Standard Rank Score HTRank Score
score subject CBSFL SBBFL %∆ CBSFL SBBFL %∆

RelativeF1 avl 4.6 2.0 -56% 9.1 4.9 -47%
RelativeF1 blackfriday 8.8 4.4 -50% 42.6 11.0 -74%
RelativeF1 html 12.8 5.0 -61% 40.7 25.3 -38%
RelativeF1 otto 8.2 6.2 -24% 102.2 21.5 -79%
RelativeF1 compiler 264.8 98.9 -63% 1148.9 1475.1 28%
RelativeOchiai avl 4.6 2.0 -56% 7.6 6.3 -16%
RelativeOchiai blackfriday 8.8 4.4 -50% 43.6 9.8 -78%
RelativeOchiai html 12.8 5.0 -61% 38.2 22.4 -41%
RelativeOchiai otto 8.7 6.8 -22% 99.2 102.6 3%
RelativeOchiai compiler 262.2 101.6 -61% 2888.8 2984.1 3%
RelativeJaccard avl 4.6 2.0 -56% 10.1 5.1 -50%
RelativeJaccard blackfriday 16.0 12.1 -24% 80.0 176.2 120%
RelativeJaccard html 12.8 5.0 -61% 33.3 24.4 -27%
RelativeJaccard otto 8.2 6.3 -23% 75.2 19.9 -74%
RelativeJaccard compiler 747.9 482.0 -36% 1074.1 1540.5 43%
F1 avl 4.6 2.0 -56% 10.4 5.1 -51%
F1 blackfriday 16.0 12.1 -24% 81.9 218.8 167%
F1 html 12.8 5.0 -61% 33.9 18.6 -45%
F1 otto 8.2 6.2 -24% 81.0 28.5 -65%
F1 compiler 746.8 470.4 -37% 1047.0 1537.9 47%
Ochiai avl 4.6 2.0 -56% 5.9 6.3 7%
Ochiai blackfriday 14.8 10.3 -30% 51.2 108.7 112%
Ochiai html 12.8 5.0 -61% 30.7 25.3 -18%
Ochiai otto 10.3 8.4 -19% 312.8 607.7 94%
Ochiai compiler 1091.6 773.5 -29% 3137.2 2988.8 -5%
Jaccard avl 4.6 2.0 -56% 10.1 5.1 -50%
Jaccard blackfriday 16.0 12.1 -24% 77.8 187.7 141%
Jaccard html 12.8 5.0 -61% 33.3 24.6 -26%
Jaccard otto 8.2 6.2 -24% 75.3 24.7 -67%
Jaccard compiler 747.9 485.4 -35% 1078.8 1435.6 33%

Summarizes the fault localization performance for CBSFL and SBBFL. Each
fault localization technique is evaluated using both the Standard Rank Score
and the HTRank Score (Defs. 11 and 9). The mean rank scores are shown
as well as the percentage changes from CBSFL to SBBFL. Lower ranks
scores indicate better fault localization performance. A negative percentage
difference (%∆) indicates SBBFL improved on CBSFL. A postive %∆
indicates CBSFL outperformed SBBFL.

HTRank. All p-values are well above the 0.05 significance level
that would suggest rejecting the null hypothesis. Therefore,
we accept the null hypotheses that the HTRank estimates are
not significantly different from the exact HTRank values. As
indicated in the table, the maximum estimation error was
around 3.7%. Therefore, if estimation is used we recommend
considering HTRank scores that are within 5% of each other to
be equivalent.

C. RQ2: Does it make a difference whether HTRank or the
Standard Rank Score is used?

Table IV details the fault localization performance we
observed for CBSFL and SBBFL under the Standard Rank
Score and HTRank using six different suspiciousness metrics.
The results obtained with HTRank were substantially different
from those obtained with the Standard Rank Score, in terms
of absolute ranks and percentage differences (%∆). The mean
Standard Rank Score for SBBFL is lower than that for CBSFL
for every suspiciousness metric and subject program. By
contrast, for some programs and metrics, the mean HTRank
scores for CBSFL are lower than those for SBBFL. The mean
HTRank scores are also higher than the mean Standard Rank
Scores overall.

Another way to look at the same phenomenon is shown in
Figure 3, which displays empirical probability density plots

for the program Otto. Each plot compares the performance of
CBSFL to SBBFL using a different evaluation method. The
top plot uses the Standard Rank Score while the other plot
uses HTRank. As shown in the top plot, the Standard Rank
Scores for both CBSFL and SBBFL are concentrated mainly
between 0 and 15, with no values over 60. In the HTRank
plot, by contrast, the scores for both CBSFL and SBBFL are
much more widely dispersed. Figure 4 compares CBSFL to
SBBFL with respect to average ranks (on a log scale), under
the Standard Rank Score (top) and HTRank (bottom), for each
version of the program Otto. The suspiciousness metric is
RelativeF1. The results for HTRank are quite distict from those
for the Standard Rank Score, with CBSFL showing much more
variability under HTRank.

These results provide confirmation for the theoretical mo-
tivation for HTRank. Recall that one of the problems with
the Standard Rank Score is that it does not account for
either the differing structures of fault localization reports or
differences in report granularity. SBBFL and CBSFL differ in
both structure (ranked CFG fragments vs. ranked basic blocks)
and granularity (multiple basic blocks vs. lone basic blocks).
We expected the Standard Rank Score to unfairly favor SBBFL
because it does not account for these differences and that is
exactly what we see in Table IV. Under the Standard Rank
Score SBBFL outperforms CBSFL on every program using
every suspiciousness score.

To be explicit, SBBFL reports ranked CFG fragments, each
of which contains multiple basic blocks. Under the Standard
Rank Score those fragments are ranked and the score is the
rank of the first fragment in which the bug appears. CBSFL
will, by contrast, rank each basic block independently. Now,
consider the case where SBBFL reports a CFG fragment at
rank 1 that contains 10 basic blocks, one of which contains
the bug. Suppose CBSFL also reports each of those basic
blocks as maximally suspicious. The Standard Rank Score
for CBSFL will be 5 while for SBBFL it will be 1. Thus,
the Standard Rank Score is unfairly biased toward SBBFL
and against CBSFL. This is once again reflected in Table IV.
The new metric HTRank does not suffer from this problem.
As shown in the table and discussed below, SBBFL often but
not always outperforms CBSFL under HTRank, suggesting that
the theoretical correction we expect is indeed occurring. We
therefore conclude that HTRank provides a better metric for
comparison when reports differ in structure and granularity.

D. RQ3: Which kind of fault localization technique performs
better, SBBFL or CBSFL?

Referring once again to Table IV, the HTRank results indicate
that SBBFL often but not always outperformed CBSFL. In
particular, when the measure used was Relative F1 (which
was found to be the best-performing measure for SBBFL in
[9]), SBBFL performed better for all programs but the com-
piler. However, when Ochiai was used CBSFL outperformed
SBBFL, although CBSFL with Relative F1 outperforms CB-
SFL with Ochiai. This indicates that SBBFL and Relative
F1 may be the best combination tested with one caveat. For

0 15 30 45 60 75 100 125 150 175 200 225 250
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y Standard Rank Score

otto
CBSFL
SBBFL

0 15 30 45 60 75 100 125 150 175 200 225 250
rank score

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y HTRank \w Jumps CBSFL
SBBFL

Fig. 3: Empirical probability density plots for the subject
program Otto – showing the distributions of both the Standard
Rank Scores and the HTRank Scores across all runs of all
versions of Otto. The CBSFL technique is shown in blue
and the SBBFL technique is shown in orange. The only
suspciousness score used in this plot is RelativeF1.

Versions

Av
g.

 R
an

k
(lo

g)

1

10

100

1000

m12
m19 m9

m18
m20 m6 m8

m15 m5 m1
m10

m13 m4 m3
m14

m11 m2 m7
m17

m16

CSBSFL Std. Rank Score SBBFL Std. Rank Score

CBSFL vs SBBFL Under Std. Rank Score

Versions

Av
g.

 R
an

k
(lo

g)

1

10

100

1000

m12
m19 m9

m18
m20 m6 m8

m15 m5 m1
m10

m13 m4 m3
m14

m11 m2 m7
m17

m16

CBSFL HTRank w/ Jumps SBBFL HTRank w/ Jumps

CBSFL vs SBBFL Under HTRank \w Jumps

Fig. 4: Comparison of CBSFL vs SBBFL average ranks (on
log scale), under the Standard Rank Score (top) and HTRank
(bottom), for each version of the program Otto; suspiciousness
metric is RelativeF1.

the compiler, SBBFL never outperforms CBSFL. However,
CBSFL also performs very badly on this large program. This
indicates that while CBSFL beats SBBFL on this program
neither technique is effective at localizing faults in it.

E. Study Limitations

The purpose of our case study is to illustrate the application
of HTRank. It was not designed to settle controversies about the
suspiciousness metrics we employed. Second, this study used
real programs and tests but used synthetic bugs. In the future,
we intend to provide an automated analysis system that builds
upon the Defects4J dataset [53]. Third, our study included a
representative but not exhaustive set of suspiciousness metrics
[2] and may not generalize to other metrics.

Finally, no user-study was performed to validate the chosen
debugging model against actions an actual programmer would
take. Although we would have liked to perform such a study
at this time, our resources do not permit us to do so. To be
conclusive, such a study would need to be large-scale and to
utilize professional programmers who are skilled in traditional
debugging and are able to spend significant time learning to
use SFL techniques with comparable skill.

V. DISCUSSION

A new, flexible approach to evaluating automatic fault
localization techniques was presented. The new HTRank Score
provides a principled and flexible way of comparing different
fault localization techniques. It is robust to differences in
granularity and allows complex fault localization reports (such
as those produced by SBBFL) to be incorporated. Unlike
previous attempts at cross-technique comparison (see Section
II) the final scores are based on the expected number of steps
through a Markov model. The model can incorporate both
information from the chosen fault localization technique as
well as other information available to the programmer (such
as the structure of the program). The HTRank Score is sensitive
to the model used (see Fig 3) and hence the choice of model
is important. The choice should be made based on 1) the fault
localization technique(s) being evaluated and 2) observations
of programmer behavior. Choosing a model after viewing the
results (and picking the model that gives the “best” results)
leads to a biased outcome.

Recommendations for Researchers

1) Report both Standard Rank Score and HTRank Score.
2) If evaluating multi-line faults the Steimann Rank Score

(Def. 5) should be used as the basis for defining the
HTRank Score.

3) Report which model is being used and why it was chosen,
and include a description of the model.

4) In the absence of user study data, set pjump = .5 and set
the weights in J uniformly.

By evaluating fault localization methods with HTRank in
addition to the Standard Rank Score researchers will be able
to make valid cross-technique comparisons. This will enable
the community to better understand the relationships between
techniques and report-granularity while taking into account
potential programmer behavior during debugging.

ACKNOWLEDGEMENT

This work was partially supported by NSF award CCF-
1525178 to Case Western Reserve University.

APPENDIX A
MARKOV CHAIN DEFINITIONS

Definition 10 (CBSFL Ranked List Markov Chain). To construct
a Markov chain representing a list of program locations ranked in
descending order by their suspiciousness scores:

1) Let L be the set of locations in the program.
2) For a location l ∈ L let s(l) be its CBSFL suspiciousness score.

3) Partition the locations in L into a list of groups G =
{g1 ⊆ L, g2 ⊆ L, ..., gn ⊆ L} such that for each group gi
all of the locations it contains have the same score:
∀ gi ∈ G, ∀ l, l′ ∈ gi [s(l) = s(l′)]

4) The score of a group s(gi) is defined to be the common score
of its members: ∀ l ∈ gi [s(gi) = s(l)]

5) Order G by the scores of its groups, such that g0 has the highest
score and gn has the lowest: s(g0) > s(g1) > ... > s(gn)

6) Now construct the set of states. There is one state for each
group g ∈ G and for each location l ∈ L.

S = {g : g ∈ G} ∪ {l : l ∈ L}

7) Finally construct the transition matrix P for the states S.

Pi,j =



1 if si ∈ L ∧ sj ∈ G ∧ si ∈ sj

|L|−1
2|L|

if si = g0 ∧ sj = si

1
2|L| if si = gn ∧ sj = si

|L|−1
2|L|

if si ∈ G ∧ sj ∈ G ∧ si − 1 = sj

1
2|L| if si ∈ G ∧ sj ∈ G ∧ si + 1 = sj

1
2|si|

if si ∈ G ∧ sj ∈ L ∧ sj ∈ si

0 otherwise

Definition 11 (CBSFL with Jumps Markov Chain). This definition
augments Definition 10.

1) Let J be a “jump” matrix representing ways a programmer
might move through the program during debugging.

2) If Jx,y > 0 then locations x, y ∈ L are “connected” by J.
3) Let pjump be the probability that when visiting a location l ∈

L the Markov process “jumps” to another location. Let 1 −
pjump be the probability that the process returns to the state
which represents its group instead of jumping. As pjump → 0
the behavior of the chain approaches the behavior of the chain
in Definition 10.

4) The new transition matrix P for the states S is

Pi,j =



1− pjump if si ∈ L ∧ sj ∈ G ∧ si ∈ sj
∧
(∑

k Ji,k

)
> 0

pjump

(
Ji,j∑
k Ji,k

)
if si ∈ L ∧ sj ∈ L ∧ Ji,j > 0

|L|−1
2|L| if si = g0 ∧ sj = si

1
2|L| if si = gn ∧ sj = si

|L|−1
2|L| if si ∈ G ∧ sj ∈ G ∧ si − 1 = sj

1
2|L| if si ∈ G ∧ sj ∈ G ∧ si + 1 = sj

1
2|si| if si ∈ G ∧ sj ∈ L ∧ sj ∈ si

0 otherwise

Definition 12 (Suspicious Behavior Markov Chain). A chain that
models a ranked list of suspicious subgraphs:

1) Let H be a set of suspicious subgraphs (behaviors).
2) For a subgraph h ∈ H let ς(h) be its suspiciousness score [9].
3) Let L be the set of locations in the program.
4) Partition the subgraphs in H into a list of groups G =
{g1 ⊆ H, g2 ⊆ H, ..., gn ⊆ H} such that for each group
gi all of the locations in gi have the same score:
∀ gi ∈ G ∀ a, b ∈ gi [ς(a) = ς(b)]

5) Let the score of a group ς(gi) be the same as the scores of its
members: ∀ gi ∈ G ∀ h ∈ gi [ς(gi) = ς(h)]

6) Order G by the scores of its groups, such that g0 has the highest
score and gn has the lowest: ς(g0) > ς(g1) > ... > ς(gn)

7) Now construct the set of states. One state for each group g ∈ G,
one state for each subgraph h ∈ H , and one state for each
location l ∈ Vh for all h ∈ H .

S = {g : g ∈ G} ∪ {h : h ∈ H} ∪ {l : l ∈ Vh, ∀ h ∈ H}

8) Let c : L → N+ be a function that gives the number of
subgraphs h ∈ H which a location l appears in.

9) Finally construct the transition matrix P for the states S.

Pi,j =



1
c(si) if si ∈ L ∧ sj ∈ H ∧ si ∈ Vsj

1
2

1

|Vsi | if si ∈ H ∧ sj ∈ L ∧ sj ∈ Vsi

1
2 if si ∈ H ∧ sj ∈ G ∧ si ∈ sj

|H|−1
2|H| if si = g0 ∧ sj = si

1
2|H| if si = gn ∧ sj = si

|H|−1
2|H| if si ∈ G ∧ sj ∈ G ∧ si − 1 = sj

1
2|H| if si ∈ G ∧ sj ∈ G ∧ si + 1 = sj

1
2|si| if si ∈ G ∧ sj ∈ H ∧ sj ∈ si

0 otherwise

REFERENCES

[1] J. Jones, M. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” Proceedings of the 24th International Con-
ference on Software Engineering. ICSE 2002, 2002.

[2] Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended comprehen-
sive study of association measures for fault localization,” Journal of
Software: Evolution and Process, vol. 26, no. 2, pp. 172–219, feb 2014.

[3] S.-F. Sun and A. Podgurski, “Properties of Effective Metrics for
Coverage-Based Statistical Fault Localization,” in 2016 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST). IEEE, apr 2016, pp. 124–134.

[4] J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula
Automatic Fault-localization Technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[5] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and Improving Fault Localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp.
609–620.

[6] C. Parnin and A. Orso, “Are Automated Debugging Techniques Actually
Helping Programmers?” in ISSTA. ISSTA, 2011, pp. 199–209.

[7] M. Renieres and S. Reiss, “Fault localization with nearest neighbor
queries,” in 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. IEEE Comput. Soc, 2003, pp. 30–39.

[8] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug
Signatures Using Discriminative Graph Mining,” in Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis,
ser. ISSTA ’09. New York, NY, USA: ACM, 2009, pp. 141–152.

[9] T. A. D. Henderson and A. Podgurski, “Behavioral Fault Localization
by Sampling Suspicious Dynamic Control Flow Subgraphs,” in IEEE
Conference on Software Testing, Validation and Verification. Västerås,
Sweden: IEEE, 2018.

[10] G. G. K. Baah, A. Podgurski, and M. J. M. Harrold, “Causal inference
for statistical fault localization,” in Proceedings of the 19th international
symposium on Software testing and analysis, ser. ISSTA ’10. New York,
NY, USA: ACM, 2010, pp. 73–84.

[11] C. C. Aggarwal and J. Han, Eds., Frequent Pattern Mining. Cham:
Springer International Publishing, 2014.

[12] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Record,
vol. 22, no. 2, pp. 207–216, jun 1993.

[13] X. Yan and J. Han, “gSpan: graph-based substructure pattern mining,”
in 2002 IEEE International Conference on Data Mining, 2002. Proceed-
ings. IEEE Comput. Soc, 2002, pp. 721–724.

[14] C. C. Aggarwal, M. A. Bhuiyan, and M. A. Hasan, “Frequent Pattern
Mining Algorithms: A Survey,” in Frequent Pattern Mining. Cham:
Springer International Publishing, 2014, pp. 19–64.

[15] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining Significant Graph
Patterns by Leap Search,” in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’08.
New York, NY, USA: ACM, 2008, pp. 433–444.

[16] R. Abreu, P. Zoeteweij, and A. Van Gemund, “An Evaluation of Similar-
ity Coefficients for Software Fault Localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39–46.

[17] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal of
Systems and Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[18] P. Agarwal and A. P. Agrawal, “Fault-localization Techniques for
Software Systems: A Literature Review,” SIGSOFT Softw. Eng. Notes,
vol. 39, no. 5, pp. 1–8, sep 2014.

[19] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on
Software Fault Localization,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, aug 2016.

[20] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not. Why?”
SIGSOFT Softw. Eng. Notes, vol. 24, no. 6, pp. 253–267, oct 1999.

[21] F. Tip, “A survey of program slicing techniques,” Journal of program-
ming languages, vol. 3, no. 3, pp. 121–189, 1995.

[22] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical
fault localization,” Journal of Systems and Software, vol. 89, no. 1, pp.
51–62, 2014.

[23] A. Marcus, A. Sergeyev, V. Rajlieh, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” Proceedings
- Working Conference on Reverse Engineering, WCRE, pp. 214–223,
2004.

[24] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? More
accurate information retrieval-based bug localization based on bug re-
ports,” Proceedings - International Conference on Software Engineering,
pp. 14–24, 2012.

[25] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: better together,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering
- ESEC/FSE 2015, no. 65. New York, New York, USA: ACM Press,
2015, pp. 579–590.

[26] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed Test Generation for
Effective Fault Localization,” in Proceedings of the 19th international
symposium on Software testing and analysis, ser. ISSTA ’10. New
York, NY, USA: ACM, 2010, pp. 49–60.

[27] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve, “Using likely
invariants for automated software fault localization,” in Proceedings
of the eighteenth international conference on Architectural support for
programming languages and operating systems, vol. 41, no. 1. New
York, New York, USA: ACM Press, mar 2013, p. 139.

[28] A. Perez, R. Abreu, and A. Riboira, “A Dynamic Code Coverage
Approach to Maximize Fault Localization Efficiency,” J. Syst. Softw.,
vol. 90, pp. 18–28, apr 2014.

[29] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization
using execution slices and dataflow tests,” in Proceedings of Sixth In-
ternational Symposium on Software Reliability Engineering. ISSRE’95.
IEEE Computer Society, 1995, pp. 143–151.

[30] H. Cleve and A. Zeller, “Locating causes of program failures,” Pro-
ceedings of the 27th international conference on Software engineering
- ICSE ’05, p. 342, 2005.

[31] S. Horwitz, “Identifying the Semantic and Textual Differences Between
Two Versions of a Program,” SIGPLAN Not., vol. 25, no. 6, pp. 234–245,
jun 1990.

[32] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” Proceedings of the 2013 International Symposium on Software
Testing and Analysis - ISSTA 2013, p. 314, 2013.

[33] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A Crosstab-based Statistical
Method for Effective Fault Localization,” in 2008 International Confer-

ence on Software Testing, Verification, and Validation. IEEE, apr 2008,
pp. 42–51.

[34] D. Landsberg, H. Chockler, D. Kroening, and M. Lewis, “Evaluation of
Measures for Statistical Fault Localisation and an Optimising Scheme,”
in International Conference on Fundamental Approaches to Software
Engineering, ser. Lecture Notes in Computer Science, A. Egyed and
I. Schaefer, Eds., vol. 9033. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 115–129.

[35] Y. Zheng, Z. Wang, X. Fan, X. Chen, and Z. Yang, “Localizing multiple
software faults based on evolution algorithm,” Journal of Systems and
Software, vol. 139, pp. 107–123, 2018.

[36] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 10, pp. 831–847, oct 2006.

[37] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” pp. 319–349, jul 1987.

[38] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang, “Evaluating the
Accuracy of Fault Localization Techniques,” 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 76–87, 2009.

[39] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the Mutants: Mutating
faulty programs for fault localization,” Proceedings - IEEE 7th Interna-
tional Conference on Software Testing, Verification and Validation, ICST
2014, pp. 153–162, 2014.

[40] C. Liu, H. Yu, P. S. Yu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining
Behavior Graphs for Backtrace of Noncrashing Bugs,” in Proceedings
of the 2005 SIAM International Conference on Data Mining. Society
for Industrial and Applied Mathematics, 2005, pp. 286–297.

[41] G. Di Fatta, S. Leue, and E. Stegantova, “Discriminative Pattern Mining
in Software Fault Detection,” in Proceedings of the 3rd International
Workshop on Software Quality Assurance, ser. SOQUA ’06. New York,
NY, USA: ACM, 2006, pp. 62–69.

[42] F. Eichinger, K. Böhm, and M. Huber, “Mining Edge-Weighted Call
Graphs to Localise Software Bugs,” in European Conference Machine
Learning and Knowledge Discovery in Databases, W. Daelemans,
B. Goethals, and K. Morik, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 333–348.

[43] F. Eichinger, K. Krogmann, R. Klug, and K. Böhm, “Software-defect
Localisation by Mining Dataflow-enabled Call Graphs,” in Proceedings
of the 2010 European Conference on Machine Learning and Knowledge
Discovery in Databases: Part I, ser. ECML PKDD’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 425–441.

[44] Z. Mousavian, M. Vahidi-Asl, and S. Parsa, “Scalable Graph Analyzing
Approach for Software Fault-localization,” in Proceedings of the 6th
International Workshop on Automation of Software Test, ser. AST ’11.
New York, NY, USA: ACM, 2011, pp. 15–21.

[45] F. Eichinger, C. Oßner, and K. Böhm, “Scalable software-defect local-
isation by hierarchical mining of dynamic call graphs,” Proceedings of
the 11th SIAM International Conference on Data Mining, SDM 2011,
no. c, pp. 723–734, 2011.

[46] S. Parsa, S. A. Naree, and N. E. Koopaei, “Software Fault Localization
via Mining Execution Graphs,” in Proceedings of the 2011 International
Conference on Computational Science and Its Applications - Volume
Part II, ser. ICCSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
610–623.

[47] L. Mariani, F. Pastore, and M. Pezze, “Dynamic Analysis for Diagnosing
Integration Faults,” IEEE Trans. Softw. Eng., vol. 37, no. 4, pp. 486–508,
jul 2011.

[48] A. Yousefi and A. Wassyng, “A Call Graph Mining and Matching
Based Defect Localization Technique,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops.
IEEE, mar 2013, pp. 86–95.

[49] J. P. A. Ioannidis, “Why most published research findings are false,”
PLoS Medicine, vol. 2, no. 8, pp. 0696–0701, 2005.

[50] C. M. Grinstead and J. L. Snell, Introduction to Probability, 2nd ed.
Providence, RI: American Mathematical Society, 1997.

[51] J. G. Kemeny and J. L. Snell, Finite Markov Chains, 1st ed. Princeton,
NJ: Van Nostrand, 1960.

[52] T. A. Davis, “Algorithm 832: UMFPACK V4.3—an Unsymmetric-
pattern Multifrontal Method,” ACM Trans. Math. Softw., vol. 30, no. 2,
pp. 196–199, jun 2004.

[53] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in
Proceedings of the 2014 International Symposium on Software Testing

and Analysis, ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp.
437–440.

