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Motivation: Large scale genomics studies have generated comprehensive molecular characterization
of numerous cancer types. Subtypes for many tumor types have been established; however, these
classifications are based on molecular characteristics of a small gene sets with limited power to detect
dysregulation at the patient level. We hypothesize that frequent graph mining of pathways to gather
pathways functionally relevant to tumors can characterize tumor types and provide opportunities
for personalized therapies.
Results: In this study we present an integrative omics approach to group patients based on their al-
tered pathway characteristics and show prognostic differences within breast cancer (p < 9.57E−10)
and glioblastoma multiforme (p < 0.05) patients. We were able validate this approach in secondary
RNA-Seq datasets with p < 0.05 and p < 0.01 respectively. We also performed pathway enrichment
analysis to further investigate the biological relevance of dysregulated pathways. We compared our
approach with network-based classifier algorithms and showed that our unsupervised approach gen-
erates more robust and biologically relevant clustering whereas previous approaches failed to report
specific functions for similar patient groups or classify patients into prognostic groups.
Conclusions: These results could serve as a means to improve prognosis for future cancer patients,
and to provide opportunities for improved treatment options and personalized interventions. The
proposed novel graph mining approach is able to integrate PPI networks with gene expression in a
biologically sound approach and cluster patients in to clinically distinct groups. We have utilized
breast cancer and glioblastoma multiforme datasets from microarray and RNA-Seq platforms and
identified disease mechanisms differentiating samples.
Supplementary information: Supplementary methods, figures and tables are available at
arXiv.org.
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1. Introduction
Personalized medicine aims to tailor treatment options for patients based on the makeup of
their diseases. In the case of cancer, the genetic makeup of tumors is characterized to identify
unique tendencies and exploit vulnerabilities of these tumors. However, identifying genomic
alterations and molecular signatures that better describe or classify cancer to accomplish this
goal has been challenging. Furthermore complex disease phenotypes, such as cancer, cannot
be fully explained by individual genes and mutations. Recent studies have explored various
approaches to uncover the molecular network signatures of cancers including multivariate
linear regression1 or factor graphs2 to combine information flow based approaches with copy
numbers and DNA methylation data. These techniques identified patient loci with high risk of
disease along with genes that are dysregulated for various cancers.3,4 Gene expression profiles
and (in some cases) DNA methylation or metabolomics data have also been used to identify
subtypes of the disease.3–7 However prognostic classification of tumors still requires attention
and it is an important step toward identifying most effective approaches in precision medicine.

Glioblastoma multiforme (GBM) is the most common form of malignant brain tumor in
adults. GBM is characterized by a median survival of one year and an overall poor prognosis.8

There have been numerous attempts to classify GBM by differential gene expression to identify
clinically and prognostically relevant subtypes.9,10 Previously methylation status of the MGMT
promoter is suggested to be associated with tumor response of gliomas to alkylating agents and
later associated with increased survival.11,12 More recently The Cancer Genome Atlas (TCGA)
project also provided supporting findings of the methylation status of the MGMT promoter
as a prognostic marker through analysis of high dimensional data for 206 GBM tumors.13

Further work utilizing the TCGA data classified GBM by aberrations and gene expression of
EGFR, NF1, and PDGFRA/IDH1 into four subtypes, Classical, Mesenchymal, Neural, and
Proneural.14 These classifications implied strong relationships between subtypes and neural
lineages as well as response to aggressive therapy. Though these studies introduced GBM
classification, there remained a need to classify dysregulations in tumors more specifically by
survivability. While earlier approaches have focused on identifying gene sets,10,15–18 these had
little impact on finding dysregulated pathway segments. For instance, using nearest shrunken
centroid classification method,18,19 or clustering algorithms,14 gene sets that stratify samples
were identified, yet functionally these were not strongly related. Hence, they present little
potential for improved treatment opportunities for patients.

Breast Invasive Carcinoma (BRCA) is the most diagnosed cancer among woman con-
sisting of multiple sub classes with distinct clinical outcomes. Previously, 5 subtypes were
identified using expression profiles of and later applied to develop predictors by manually
selected genes.6,20,21 Consecutive studies identified differing number of subtypes similar to ini-
tal identification. For instance using expression profiles Sotiriou et al. identified 6 subtypes
further separating luminal-like and basal-like groups.22,23 Furthermore a comprehensive study
integrating multiple omics data to identify unified classification of the breast cancer sam-
ples provided strong evidence for 4 subtypes; Basal, Her-2 enriched, Luminal-A, Luminal-B .4

However studies incorporating network or pathway information either used manual selection
of pathways or produced limited results. For instance Gatza et al. identified 17 subgroups



using pathway based classification with mixed intrinsic subtype signatures.24

We describe an integrative omics approach based on frequent subgraph mining (FSM)
that brings Protein-Protein Interaction (PPI) networks and gene expression data together to
infer molecular networks that are dysregulated in patient samples. We tested our approach
using gene expression data for both glioblastoma and breast cancer datasets collected with mi-
croarray and next generation sequencing (NGS) approaches. The networks inferred from FSM
not only stratify patients into clinically-relevant subtypes, but also provides significant prog-
nostic differences. Our results suggest that a network-based stratification of patients is more
informative than using gene-level or feature-based data integration. Identifying personalized
dysregulated signaling networks will offer effective means to diagnose and treat patients.

2. Methods

The proposed method uses a novel approach to integrate mRNA expression profiles and PPI
networks to identify personalized dysregulated signaling pathways. We hypothesize that dys-
regulated sub-pathways observed in cancer can discriminate between tumors types which lead
to different patient outcomes. We utilized publicly available datasets to develop and validate
a method to detect altered molecular signatures in canonical pathways. Our classifications
better distinguish patient prognosis in biologically relevant terms than previous studies.14,25,26

Our approach is to construct personalized networks of PPIs for cancerous tumors based
on mRNA expression data. Section 2.1 details the construction of these networks called dys-
regulated signaling pathways. A network is constructed for each of the patients in each of the
datasets used in Section 3. Personalized networks are mined using a new algorithm called
QSPLOR (queue explorer) to identify a subset of frequently occurring subgraphs with 4 to
8 proteins as detailed in Sections 2.2 and 2.3. Finally, Non-Negative Matrix Factorization is
used to cluster the patients via the frequently occurring subgraphs (Section 2.4 and 2.5).

In Section 3 the clusters are shown to separate patients into short-term and long-term
survival groups. The methodology presented has the potential to stratify patients based on
their molecular signatures, improve delivery of therapies and assist clinicians and researchers
alike to better assess patient prognosis.

2.1. Dysregulated Signaling Pathways

Dysregulated Signaling Pathways are labeled graphs (Section 2.2) where vertices represent
proteins and edges represent dysregulated activation/inhibition interactions. They are con-
structed from mRNA expression data (Section 3) and known PPI data.27,28

Dysregulation is computed by constructing a matrix P, where Pi,a is the standard score
of expression level of gene a for patient i. Then an interaction matrix S constructed from P

in Equation 1. In Equation 1 (ab) represents two genes a and b such that the protein encoded
by a interacts with the protein encoded by b. The variable i represents a particular patient.

S(ab),i =
√

P2
i,a + P2

i,b (1)

To determine if the relationship between two genes a and b is dysregulated for patient i the
z-score for each interaction is computed. In Equation 2, µ(S(ab),·) and σ(S(ab),·) respectively



refer to the mean and standard deviation of the dysregulation scores for genes a and b.

Z(S)(ab),i =
S(ab),i − µ(S(ab),·)

σ(S(ab),·)
(2)

If Z(S)(ab),i > c then an edge a → b is included in the graph for patient i indicating a and b

are dysregulated. In Section 3 the constant c, the z-score threshold, was set to 2 to mine for
dysregulation.

2.2. Frequent Subgraph Mining

Frequent Subgraph Mining (FSM) is a data mining technique which looks for repeated sub-
graphs in a graph database. As in Inokuchi et al.,29 the database D is a set of transactions
where each “transaction” is the dysregulated signaling pathways for a patient. FSM detects
signaling sub-pathways which are dysregulated in multiple patients.

A dysregulated signaling pathway is a directed labeled graph G consisting of a set of vertices
V , a set of edges E = V ×V , a set of labels L, and a labeling function which maps vertices (or
edges) to labels l : V |E → L. A graph H = (VH , EH , L, l) is a subgraph of G = (VG, EG, L, l) if
VH ⊆ VG and EH ⊆ EG.

A graph H is a subgraph of G (H v G) if there is an injective mapping m : VH → VG s.t.
(1) All vertices in H map vertices in G with the same label: ∀ v ∈ VH [l(v) = l(m(v))]

(2) All edges match: ∀ (u, v) ∈ EH [(m(u),m(v)) ∈ EG]

(3) All edge labels match: ∀ (u, v) ∈ EH [l(u, v) = l(m(u),m(v))]

Such a mapping m is known as an embedding. The problem of determining if a graph H

is a subgraph of G is called the subgraph isomorphism problem and is NP-Complete.30 The
frequency of a subgraph H is the number of graphs (transactions) in D which H embeds into.

The subgraph relationship · v · induces a partial order on the subgraphs of the graphs in
D. That partial order is referred to as the subgraph lattice. If the subgraphs in the lattice are
all connected it is known as the connected subgraph lattice. The connected subgraph lattice of
D can be viewed as a graph LD = (VL, EL). The vertices VL are all of the connected subgraphs
of G. If u and v are both vertices of LD then there is an edge between u and v if and only if
u v v and v and be constructed from u by adding one edge and at most one vertex. The k

frequent connected subgraph lattice k-LD contains only those subgraphs of graphs in D which
are present in at least k graphs in the graph database D. The leaf nodes of the k-LD are the
maximal frequent subgraphs.

The objective of frequent subgraph mining is to discover the vertices of k-LD. If a sub-
graph does have at least k transactions it is embedded in, it is known as a frequent subgraph.
Since finding a frequent subgraph requires repeated subgraph isomorphism queries the prob-
lem complexity of FSM is exponential. The number of steps in frequent subgraph mining is
bounded from above by O(2ggh) where g is the size of the graph and h is the size of the largest
frequent subgraph. The term 2g is an upper bound on the number of subgraphs of g. Tighter
bounds can be obtained if one has more specific knowledge of the graph. The term gh is an
upper bound on number of steps to check if a graph of size h is a subgraph of g.

We present QSPLOR, a new algorithm to find a subset of frequent subgraphs in Section
2.3. It is used to find frequently dysregulated signaling sub-pathways. QSPLOR uses a fixed



1 # param s tar t : frequent s ing l e vertex subgraphs
2 # param score : a function to score queue items
3 # param max size : the max s i z e of the queue
4 # param min sup : int , amount of support
5 # returns : a generator of frequent subgraphs
6 def qsplor ( start , score , min sup ) :
7 while not start . empty ( ) :
8 queue = [ start . pop() ]
9 while not queue . empty()

10 latt ice node = take (queue , score )
11 kids = latt ice node . extend(min sup)
12 for ext in kids : add(queue , score , ext , max size )
13 yie ld subgraph
14 def add(queue , score , item , max size ) :
15 queue . append( item)
16 while len (queue) >= max size :
17 i = argmin( score ( idx , queue) for idx in sample (10 , len (queue )))
18 queue . drop( i )
19 def take (queue , score ) :
20 i = argmax( score ( idx , queue) for idx in sample (10 , len (queue )))
21 return queue . take ( i )

Fig. 1. QSPLOR: a new algorithm for mining a subset of frequent subgraphs.

amount of memory and a user defined scoring heuristic to guide the search. The algorithm only
reports the maximal frequent subgraphs found for compactness. We report only a subset, and
not all of frequently dysregulated signaling pathways because (i) it is much faster to report
only some of the frequent subgraphs and (ii) using a greater number of frequent subgraphs
does not necessarily lead to a more discriminating clustering of samples in our analysis.

There have been a variety of FSM algorithms developed over the last two decades and there
are several recent surveys available.31,32 In recent years interest in collecting representative
subsets of frequent subgraphs has emerged.33,34 Both studies employ random walks on the
frequent connected subgraph lattice to collect a sample of the frequent subgraphs. Finally,
Leap Search35 was proposed to find interesting patterns as defined by an objective function.

2.3. QSPLOR: Mining a Subset of Frequent Subgraphs

Figure 1 shows pseudo code for QSPLOR a new algorithm to mine a subset of frequent
subgraphs. It proceeds as a graph traversal of k-LD (the k frequent connected subgraph lattice
of the graph database). It begins the traversal at each lattice node representing a frequent
subgraph containing only one vertex. At each outer step it initializes a queue with one of the
starting lattice nodes. Then in each inner step it removes an item of the queue. The take

function removes one item from a uniform sample of the queue such that a user supplied
scoring function is maximized.

On line 11, the lattice node is extended. This involves finding all possible one edge exten-
sions to the subgraph represented by the lattice node. The ones that are frequent are returned
by the extend method. After the extensions are found they are added to the queue with the
add method. If the queue is at the maximal size after the addition, one item from the queue
is dropped. The dropped item is from a uniform sample of the queue and minimizes the user
supplied score function. After all extensions have been processed the subgraph is output.

The key to our algorithm is the user supplied scoring function which guides the traversal.
The simplest scoring function simply returns a uniform random number. This will cause the
traversal to be unguided. Complex scoring functions can prioritize certain labels or structures.



The best general scoring functions are those that prioritize queue diversity such that traversal
is encouraged to explore as much of the lattice as possible. We use a distance function which
captures both structural and labeling differences between graphs as the scoring function for
this paper. See the supplementary methods for more details on QSPLOR.

2.4. Non-Negative Matrix Factorization

Clustering via Non-Negative Matrix Factorization (NMF) is used to partition patients into
subgroups. Section 3 shows that the partitions are prognostically discriminative between the
patient subgroups. NMF method was first proposed by Lee and Seung36 with the aim of de-
composing images into explanatory basis vectors. NMF has also been used on gene expression
data.37 For a description of our usage of NMF see the supplementary methods.

2.5. Clustering Metrics

Use of NMF requires careful evaluation of the results. Since NMF is based on random ini-
tialization of the initial stratification we have applied consensus clustering approach. Using R
package NMF38 we have applied method ‘nsNMF’ and random seed with 150 runs. To identify
best clustering rank k cophenetic correlation coefficient, silhouette values, residual metrics are
evaluated. Cophenetic correlation coefficient is first suggested by Brunet et al.37 to quantify the
stability of the clusters. It is calculated as the correlation between sample distances obtained
from consensus matrix and the cophenetic distances obtained from hierarchical clustering of
the consensus matrix. Brunet et al. suggested to choose the ranks where cophenetic correlation
coefficient starts to decrease. Silhouette is another method for quantifying cluster stability.39

The values range between −1 and 1. Intuitively the average silhouette value represents how
similar each sample is to the cluster the sample belongs to and how distant from neighbor
clusters. Clustering with silhouette values > 0.7 are considered strong as patterns. Residual is
the error of the NMF method. Since the method produces an approximation of the original
matrix, the residuals represent how close the factorization is to the original data. Note that
the residuals decrease naturally as the rank of factorization increases since more variables are
added to represent the original matrix.

2.6. Data Sources

PPI networks were downloaded from Reactome(v56). Reactome is an expert curated publicly
available repository which stores multiple types of relations including reactions, indirect and
direct complexes.27,28 Gene expression data was obtained from previously published studies
and TCGA using UCSC Cancer Browser.40 Clinical data is obtained from both TCGA and
corresponding publications (See Figure 2).

3. Results

3.1. Breast Cancer (Microarray)

Curtis et al.41 used genomic variations to identify novel subgroups in breast cancer and vali-
dated on a sample of 995 patients. Using the same discovery dataset we were able to identify
5 groups with significant differences in survival. QSPLOR mined 145 sub-pathways, with 4-8
proteins each, dysregulated in at least 25 patients.



Fig. 2. Summary of Data including sample and network numbers, median days and interquartile range,
sample count of alive and dead event status. In this study both microarray (MA) and RNA-Seq data for
breast cancer (BRCA) (MA: 41 and RNA-Seq:4) and late stage brain tumors (GBM) (MA:14 and RNA-Seq:42)
was utilized.

DataSet Patients Sub-Pathways Median Days Alive/Dead
BRCA MA 995 145 1449 645/350
BRCA RNA-Seq 200 200 1230 685/106
GBM MA 197 553 375 22/175
GBM RNA-Seq 163 548 335 50/113

Consensus clustering and utilization of clustering metrics identified 5 patient groups. The
clustering results are similar to clustering of patient samples reported in Curtis et al.41 Identi-
fied clusters 1 and 2 matched with clusters 10 and 5 respectively in Curtis et al. study as shown
in Figure 3b. Furthermore given clusters also match with Basal and Luminal B intrinsic sub-
types with further stratification. Compared to previously established subtypes based on the
PAM50 classifier, identified clusters are significantly separated in terms of survival(Figure 3a).
Enrichment analysis for Reactome pathways in short survivor group revealed pathways that
are functionally relevant or predictor of poor survival, i.e. Nonsense-Mediated Decay (NMD),43

SRP Dependent cotranslational protein targeting to membrane,44 Selenocysteine synthesis,45

Signaling by WNT.46 In contrast, long survivor group was enriched in Neuronal System,1,45

GABA receptor activation,47 Signaling by GPCR48 (See Supplementary Tables S1-S5).

3.2. Breast Cancer (RNA-Seq)

To test the proposed method on breast cancer with data from a different platform, we ob-
tained 791 RNA-Seq samples from TCGA with matching clinical data. QSPLOR identified
200 dysregulated subgraphs. Note that the dataset was not filtered based on prior treatment
or patient characteristics hence a heterogeneous dataset was utilized in contrast with breast
cancer microarray dataset above. The clustering identified 8 clusters based on cophenetic
correlation coefficient and silhouette values. However 8 clusters did not result in significant
survival differences hence we have utilized 5 clusters to test whether informative groups were
obtained with significant survival differences (p < 0.05) (Figure 4a). Reactome pathway en-
richment for short survivor group resulted in processes related to cellular division; Mitotic
Prometaphase, Separation of Sister Chromatids, Activation of ATR in response to replication
stress. Furthermore APC/C-mediated degradation of cell cycle proteins and mitotic proteins
pathways were significantly dysregulated. Long survivor group was enriched in immune system
related processes; MHC class II antigen presentation, TCR signaling, Cytokine signaling.

We have applied the subgraphs found in microarray dataset to RNA-Seq dataset to check
cross-platform application of the proposed method. We were able to identify 5 clusters with
significant survival differences. The identified clusters 3 and 4 matched previously identified
Basal and Her2 subtypes respectively with further stratification (Figure S16). Pathway en-
richment for short and long survivor groups resulted in Keratin metabolims, Signaling by
Rho GTPases, Signaling by WNT, Gastrin-CREB signaling pathway via PKC and MAPK,
Axon guidance for short survivor group and Signaling by GPCR, EGFR, VEGF, FGFR4,
Interleukin-2 signaling for long survivor group (See Supplementary Tables S11-S15).
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Fig. 3. Results for breast cancer data analysis used in Curtis et al..41 (a) The Kaplan-Meier plot for 5 groups
are shown (Log-rank test p−value < 9.57E−10).The x-axis represents days of survival. (b) Consensus cluster-
ing obtained using NMF is shown. Top bars show novel subtypes clusters, intrinsic subtypes and classification.
IntClustMemb shows clusters identified in the Curtis et al. study
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Fig. 4. (a) Kaplan-Meier and consensus clustering results for breast cancer data obtained from TCGA (Log-
rank test p − value < 3.21E − 02). Survival is represented as days. (b) Top bar in figure shows intrinsic
subtypes previously defined, lower bar shows our novel pathway based groups.
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Fig. 5. (a) Survival and consensus clustering results for glioblastoma multiforme microarray data used in.14

Survival is represented as days and there is a significant difference (Log-rank test p− value < 1.9E − 02). (b)
Top bar in consensus clustering shows previous classification of GBM patients.



3.3. Glioblastoma Multiforme (Microarray)

Using 11861 genes from GBM microarray dataset14 our method revealed 4 clusters with sta-
tistically significant stratification in survival curves (p−value < 0.05). The long survivor group
1 consists mostly of proneural subtypes, which also supports the biological implication of our
method. A new stratification is visible in Figure 5b for the short survivor group 3.

To identify biological implications, we conducted over-representation analysis for Reac-
tome pathways. The long survivor group revealed pathways related to extracellular matrix
organization and immune system; axon guidance, collagen degradation, TNFSF mediated
activation cascade. The short survivor group was enriched in cell cycle related pathways in-
cluding: replication, strand elongation and repair. Group 2 shows enrichment for trafficking
of GPCR signaling, the Glutamate neurotransmitter release cycle, signaling by Wnt, Gastrin-
CREB signaling pathway via PKC and MAPK. Group 4 shows enrichment for respiratory
electron transport chain, mitochondrial translation and translation related processes. Over-
all, the analysis suggests new targets to study for GBM therapy (See Supplementary Tables
S16-S19).

3.4. Glioblastoma Multiforme (RNA-Seq)

Using GBM data from TCGA42 which included 15739 genes, our method revealed 4 groups
with significant survival (p-value <0.01) stratification clustered based on 548 identified sub-
graphs. As in the microarray data analysis, mesenchymal groups were mostly clustered to-
gether in group 3 including the classical subtype. Group 4 is comprised of multiple subtypes
suggesting a new classification scheme (Figure 6b). Pathway enrichment results may reveal
new biomarkers. Short survivor group 3 was enriched in processes related to cell division;
Mitotic prometaphase, Separation of Sister Chromatids, G2/M Transition, DNA Replication.
In contrast, long survivor group 1 based on 1 year survival is enriched in Assembly of the
primary cilium, Cytokine Signaling in Immune System, Gastrin-CREB Signaling pathway via
PKC and MAPK, VEGFA-BEGFR2 Pathway and RET signaling. Interestingly Assembly of
the primary cilium is found to be associated with GBM tumors49,50 (See Supplementary Tables
S20-S23).

4. Validation

We compared our method against 2 recently published work integrating PPI and pathway
information; Pathifier and NCIS. (Details of the methods are given in supplementary docu-
ment) Pathifier identified 6 groups with significant differences in survival (Figure S14a). The
number of samples in each group does not suggest biologically relevant clustering (n = 6, and
the larger clusters are not significant in terms of survival). The separation distances between
groups are not robust with cophenetic correlation coefficient 0.61(Figure S14b). NCIS25 iden-
tified 4 previously established subtypes in the GBM microarray dataset in conjunction with
a curated PPI network. The network was constructed by the authors from Reactome, NCI-
Nature Curated PID, and KEGG. It consists of 11,648 genes, 211,794 interactions matching
7,183 genes in the GBM dataset. The identified subtypes are similar to established subtypes
and have significant differences in survival. However, it is not clear how the patients are clus-
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Fig. 6. (a) Kaplan-Meier and (b) consensus clustering results for glioblastoma multiforme samples obtained
from TCGA. The RNA-Seq data set showed significant survival difference (Log-rank p− value < 8.11E − 03)

tered since previously identified subtypes do not provide overall significant survival difference
(Figure S4). Using the data from NCIS study we have identified 5 clusters (based on the
clustering metrics) which show separation of survival curves (Figure S15a). We were able to
cluster previously proposed mesenchymal and proneural subtypes with further stratification of
mesenchymal group (Figure S15b). Based on the survival analysis, proneural clustered groups
show the longest survival curves in agreement with previous findings. These results suggest
that the proposed method performed better than the NCIS and Pathifier algorithms in terms
of significance of survival stratification and relevance of the identified genes and pathways
which can be used as precursor targets for future therapeutic studies.

5. Discussion

The proposed method aims to integrate PPI data with gene expression data using a novel
approach. In this study we were able to identify networks that play predictive role in clinical
outcome and also networks that crosstalk between the established pathways. A crucial devel-
opment for improving current prognostic methodologies. The presented method is also more
general as it does not require apriori identification of important genes.

Several studies have investigated molecular correlation of prognosis and clinical subclasses
in GBM. Earlier studies have identified tumor grade as one of the strong predictors of disease
outcome,51 such as TP53 mutation and EGFR amplifications were claimed to stratify patients
into subgroups,52,53 while a later study contests the validity of this classification.54 Further
studies have identified various gene sets that would separate the patient samples by their
molecular characterization,10,15–18 and some have reported prognostic value of these gene sets.
However, most of these have identified different sets of genes, a consensus on the functional
delivery has not been reached. These proposed subtype classification methods also identified
different sets of patient subtypes, classifications greatly rely on selected patient groups and
sample size.

Overall the results suggest possible targets and pathways for cancer progression, mecha-



nisms and survival. Additionally enrichment using long and short survivor groups from RNA-
Seq data resulted in similar gene targets. Note that results are ‘reversed’ for RNA-Seq dataset
compared to microarray analyzed samples, however since the stratification is based on dys-
regulation, the method includes both overexpression or underexpression. Hence genes are
categorized as possible markers rather than specific targets for long or short survival.

Our validation of the results we presented here, which reproduced similar survival curves
over independent studies, presents great potential for prognostic value for this method. More-
over, finding significant mechanisms that can describe the underlying effects of survival and
treatment responses can be easily done within these parameters and provide candidate path-
ways for therapeutic intervention. While follow up studies are needed to further asses the
prognostic value, and possible effect of treatments, analysis that we have conducted provide
an initial look of the biological mechanisms underlying in these patient groups with different
survival which are also supported by various studies.

Gathering multiple omics datasets to better characterize individuals and associating
these with extensive phenotype information has been the hallmark achievement of recent
years.3,4,14,41,42 These datasets have paved the road to improved personalized medicine, promis-
ing better disease characterization and diagnosis, identification of patient-specific treatment
options and improved monitoring of patients in need. While personalized medicine offers great
benefit to individuals, the computational approaches to integrate these multiple omic datasets
and statistical methods to leverage the underlying disease and patient traits is still under de-
velopment. This study tackled this problem of integration network data with transcriptomics
data to identify classification scheme for both breast and late stage brain tumors (GBM). Our
method can be used to group patients in an unsupervised manner, and have prognostic value.
The significant separation of patient samples will allow further studies and utility, since these
classifications are based on functionally related frequently altered pathway segments. In the
future, we plan to investigate the utility of this method for other cancer types, integrating
additional genomic features and investigate its value in improving treatment options.
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