
Rethinking Dependence Clones
Tim A. D. Henderson†, and Andy Podgurski‡

Dept. of Electrical Engineering and Computer Science
Case Western Reserve University

Cleveland, Ohio, USA 44106
Email: †tadh@case.edu, ‡podgurski@case.edu

Abstract—Semantic code clones are regions of duplicated code
that may appear dissimilar but compute similar functions. Since
in general it is algorithmically undecidable whether two or more
programs compute the same function, locating all semantic code
clones is infeasible. One way to dodge the undecidability issue
and find potential semantic clones, using only static information,
is to search for recurring subgraphs of a program dependence
graph (PDG). PDGs represent control and data dependence
relationships between statements or operations in a program.
PDG-based clone detection techniques, unlike syntactically-based
techniques, do not distinguish between code fragments that differ
only because of dependence-preserving statement re-orderings,
which also preserve semantics. Consequently, they detect clones
that are difficult to find by other means. Despite this very
desirable property, work on PDG-based clone detection has
largely stalled, apparently because of concerns about the scal-
ability of the approach. We argue, however, that the time has
come to reconsider PDG-based clone detection, as a part of a
holistic strategy for clone management. We present evidence
that its scalability problems are not as severe as previously
thought. This suggests the possibility of developing integrated
clone management systems that fuse information from multiple
clone detection methods, including PDG-based ones.

I. INTRODUCTION

Fragments of similar code are typically scattered throughout
large code bases [1]. These repeated fragments or code clones
often result from programmers copying and pasting code. Code
clones (or just clones) may also result from limitations of a
programming language, use of certain APIs or design patterns,
following coding conventions, or a variety of other causes.
Whatever their causes, existing clones need to be managed.
When a programmer modifies a region of code that is cloned
in another location in the program, they should make an active
decision whether or not to modify the other location. Clearly,
such decisions can only be made if the programmer is aware
of the other location.

In general, there are 4 types of code clones [1]:
Type-1 Clones – Identical regions of code (excepting whites-

pace and comments).
Type-2 Clones – Syntactically equivalent regions (excepting

names, literals, types, and comments).
Type-3 Clones – Syntactically similar regions (as in Type-2)

but with minor differences such as statement additions or
deletions.

Type-4 Clones – Regions of code with functionally equiva-
lent behavior but possibly with different syntactic struc-
tures.

Much of the research on code clone detection and maintenance
has been geared toward Type-1 and Type-2 clones [1]–[4], as
they are easier to detect and validate than Type-3 and Type-
4 clones. The two most popular detection methods involve
searching for clones in token streams [5], [6] and abstract
syntax trees (ASTs) [7], respectively.

An alternative approach to clone detection is to search for
them in a Program Dependence Graph (PDG) [8], which
represents the control and data dependences between state-
ments or operations in a program. Recurring subgraphs in
PDGs represent potential dependence clones (see Figure 1
on page 3, which is examined in Section II). Some of the
previous work [9]–[11] on PDG-based clone detection used
forward and backward path-slicing to find clones. This method
can detect matching slices, but it cannot detect all recurring
subgraphs. The latter can be identified using frequent subgraph
mining (FSM) [12]. However, for low frequency thresholds,
the number of PDG subgraphs discovered by FSM may be
enormous. For example, we found that for a Java program with
70,000 lines of code (LOC), over 700 million PDG subgraphs
with 5 or more instances were discovered by FSM.

Since it is infeasible for developers to examine so many
subgraphs, we previously developed GRAPLE [13], an algo-
rithm to select representative samples of maximal frequent
subgraphs. In this paper, the core sampling process remains
the same as in GRAPLE but we present a new algorithm for
traversing the k-frequent subgraph lattice (see Section III).
One tricky aspect of FSM is how to define exactly what
“frequency” means in a large connected graph [14]. In order
to handle pathological cases that occur in real programs, we
introduce a new metric to measure subgraph frequency (or
“support”), called the Greedy Independent Subgraphs (GIS)
measure. Section IV details the first empirical examination of
the scalability and speed of sampling dependence clones from
large programs. The study showed that our new system can
quickly sample from programs with 500 KLOC of code and
successfully sample from programs with perhaps 2 MLOC.
Finally, since at times the sampling algorithm may return
several potential clones, which are quite similar to each other,
we evaluate the performance of a density-based clustering
algorithm on the samples collected.

II. A MOTIVATING EXAMPLE

Figure 1 shows an example dependence clone extracted
from jGit, a Java implementation of the Git version control

system. The clone was identified from the PDG of jGit
produced by our PDG-generator jpdg [13]. PDG-based clone
detection techniques, unlike techniques based on syntactic
representations, do not distinguish between code fragments
that differ only because of dependence-preserving statement
re-orderings, which also preserve semantics [15]. Hence, using
only static information, they detect semantically-equivalent
clones that are not detected by syntactically-based techniques.
(Of course, they cannot detect all semantically-equivalent code
fragments.)

Three functions are shown in Figure 1 (two of them are par-
tial) that parse PATCH files. The PATCH file format is a plain
text format describing the differences (line by line) between
two versions of a piece of software. There are several varieties
of PATCH files including: “Traditional”, “Combined”, and
“GIT”, all of which jGit can parse. Both the Combined and
GIT formats are supersets of the Traditional format, which
leads to some amount of duplication, especially involving
headers. Figure 1(d) shows a graph pattern “explaining” the
highlighted duplication in the three functions in terms of a
subgraph of jGit’s PDG, which represents code detecting the
start of a Traditional PATCH header.

However, the duplication in Figure 1 isn’t due to a simple
copy-paste. Each function contains unique context-specific
code interleaved with portions that detect the start of a
Traditional header. Figure 1(a) contains the function parse-
TraditionalHeaders, which uses the pattern to drive the
parser to extract the changed filenames. Function parseFile
in Figure 1(b) drives the parsing process for all file types
and uses the pattern to detect the start of each “hunk.” In
contrast to the function in 1(a), parseFile reorders some of
the statements and interleaves significant new functionality
between statements. Finally, function parseHunks in Figure
1(c) exhibits a third statement ordering distinct from the first
two. It uses the pattern to detect when it should stop parsing
the current hunk.

Figure 1 illustrates that dependence-based clone detection
can discover subtle programming patterns that are difficult to
detect using other program representations due to differences
in the ordering of statements within pattern instances and to
the interleaving of statements from within the pattern with
other statements.

III. SAMPLING DEPENDENCE CLONES

Dependence clones are found by identifying recurring sub-
graphs of a program dependence graph (PDG), which is a
kind of labeled directed graph. Formally, a labeled directed
graph or labeled digraph G = (V,E, l) consists of a set V of
vertices, a set of edges E ⊆ V × V , and a labeling function l
that maps vertices and edges to labels.

A. Program Dependence Graphs

A program dependence graph (PDG) [8], [15]–[17] is a
labeled digraph where the vertices represent statements or
operations and the edges represent control or data dependences
between them. A statement s is control dependent on another

statement t if t is a conditional statement that decides whether
s executes. For instance, the statements in the body of an if
statement are each control dependent on the conditional ex-
pression of the if statement. A statement s is data dependent
on a statement t if s reads a value v defined by t such that
there is a control flow path between t and s that does not
redefine v. Since PDGs represent dependence relationships
instead of control flow relationships, they are not affected by
semantics-preserving changes to the ordering of operations.
The PDGs considered in this paper were constructed using
our PDG generator jpdg [13].

Frequent subgraph mining is defined in terms of subgraph
isomorphism.

Definition 1 (Subgraph Isomorphism). Given labeled digraphs
H = (VH , EH , lH) and G = (VG, EG, lG), an injective
mapping m : VH → VG is a subgraph isomorphism when:

1) m maps each vertex in H to a vertex in G with the same
label: ∀ v ∈ VH [lH(v) = lG(m(v))]

2) m preserves edges:
∀ u, v ∈ VH [(u, v) ∈ EH ⇔ (m(u),m(v)) ∈ EG]

3) m preserves edge labels:
∀ (u, v) ∈ EH [lH(u, v) = lG(m(u),m(v))]

If there is a subgraph isomorphism m between H and G
then H is a subgraph of G, denoted H v G. A subgraph
isomorphism from H into G is called an embedding of H in
G. The set of all of subgraph isomorphisms from H into G is
denoted by JHKG. The problem of locating all of the unique
embeddings of H in G is known as the subgraph matching
problem. Frequent subgraph mining finds all subgraphs H that
have at least k supported embeddings in a graph G, for a
specified k. The number of supported embeddings is typically
fewer than the number of unique embeddings [14].

B. Recurring Subgraphs

Dependence clones can be found by searching for “fre-
quent” subgraphs of a PDG. An advantage of using FSM,
rather than some other data mining techniques, is that lower
frequency thresholds (e.g., 2-5) can be used without increasing
the number of irrelevant patterns that are found [18]. This is
because FSM helps ensure that the statements in a pattern are
semantically related – not just co-occurring.

Definition 2 (k-Frequent Subgraph). Given a support measure
(support counting function) σ : J·K → N+, a minimum
frequency level k ∈ N, and a labeled digraph G, subgraph
H of G is k-frequent if σ(JHKG) ≥ k.

The process of finding frequent subgraphs of G can be
viewed as a traversal of a lattice of subgraphs. The subgraph
relation · v · induces a Connected Subgraph Lattice LG

representing all the possible ways of constructing G from the
empty subgraph by adding one edge at a time. LG is a digraph
where each vertex u represents a unique connected (ignoring
edge direction) subgraph of G. There is an edge from u to v
in LG if adding some edge ε to u creates a subgraph u + ε
of G that is isomorphic to v, v ∼= u + ε. The k-Frequent

1 int parseTraditionalHeaders(int ptr, final int end) {
2 while (ptr < end) {
3 final int eol = nextLF(buf, ptr) ;
4 if (isHunkHdr(buf, ptr, eol) >= 1) {
5 // First hunk header; break out and parse them later.
6 break;
7 } else if (match(buf, ptr, OLD_NAME) >= 0) {
8 parseOldName(ptr, eol);
9 } else if (match(buf, ptr, NEW_NAME) >= 0) {

10 parseNewName(ptr, eol);}
11 } else {
12 // Possibly an empty patch.
13 break;
14 }
15 ptr = eol;
16 }
17 return ptr;
18 }

(a) Example from org.eclipse.jgit.patch.FileHeader (line 496)

1 int parseFile(final byte[] buf, int c, final int end) {
2 while (c < end) {
3 if (isHunkHdr(buf, c, end) >= 1) { //Needs header
4 error(buf, c,
5 JGitText.get().hunkDisconnectedFromFile);
6 c = nextLF(buf, c);
7 continue;
8 }
9 // OMITTED: Valid git style patch?

10 final int n = nextLF(buf, c) ;
11 if (n >= end) { // Patches cannot be one line long
12 return end;
13 }
14 if (n - c < 6) { // A valid header is >= 6 bytes
15 c = n;
16 continue;
17 }
18 if (match(buf, c, OLD_NAME) >= 0
19 && match(buf, n, NEW_NAME) >= 0) {
20 // Probably a traditional patch. check "@@ -"
21 final int f = nextLF(buf, n);
22 if (f >= end)
23 return end;
24 if (isHunkHdr(buf, f, end) == 1)
25 return parseTraditionalPatch(buf, c, end);
26 }
27 c = n;
28 }
29 return c;
30 }

(b) Example from org.eclipse.jgit.patch.Patch (line 172)

1 int parseHunks(final FileHeader fh, int c, final int end) {
2 final byte[] buf = fh.buf;
3 while (c < end) {
4 // If we see a file header at this point, we have all of the
5 // hunks for our current file. We should stop and report back
6 // with this position so it can be parsed again later.
7 if (match(buf, c, DIFF_GIT) >= 0)
8 break;
9 if (match(buf, c, DIFF_CC) >= 0)

10 break;
11 if (match(buf, c, DIFF_COMBINED) >= 0)
12 break;
13 if (match(buf, c, OLD_NAME) >= 0)
14 break;
15 if (match(buf, c, NEW_NAME) >= 0)
16 break;
17
18 if (isHunkHdr(buf, c, end) == fh.getParentCount()) {
19 // OMITTED: Parses the hunk
20 continue;
21 }
22 final int eol = nextLF(buf, c) ;
23 if (fh.getHunks().isEmpty()
24 && match(buf, c, GIT_BINARY) >= 0) {
25 fh.patchType = FileHeader.PatchType.GIT_BINARY;
26 return parseGitBinary(fh, eol, end);
27 }
28 if (fh.getHunks().isEmpty() && BIN_TRAILER.length < eol - c
29 && match(buf, eol - BIN_TRAILER.length, BIN_TRAILER) >= 0
30 && matchAny(buf, c, BIN_HEADERS)) {
31 // The patch is a binary file diff, with no deltas.
32 fh.patchType = FileHeader.PatchType.BINARY;
33 return eol;
34 }
35 c = eol; // Skip this line and move to the next.
36 }
37 // OMITTED: Check for empty patch which might be binary.
38 }

(c) Example from org.eclipse.jgit.patch.Patch (line 272)

=

call nextLF

int:2

>=

int:0

return

int:0

call match

int:2int:0

<

goto

<

int:0

OLD_NAME

byte[]:3

goto

<

call match

NEW_NAME

0

int:1

0

int:1int:0

byte[]:3

(d) Graph pattern explaining the code duplication

Fig. 1: The highlighted regions above illustrate semantic code duplication in jGit (commit efd91ef8a), which was not found by the clone
detector CCFinderX [5]. jGit is a Java implementation of the Git version control system. The three functions shown parse portions of PATCH
files. The function in (a) parses the header of traditional PATCH files. The function in (b) (which has portions removed) parses all types of
PATCH files used by Git (and “drives” the rest of the parsing functions). The function in (c) (which has portions removed) parses the hunks
from the PATCH file looking for headers to signal the start of the next hunk. The graph in (d) is a frequent subgraph found in the PDG of
jGit (produced by jpdg from JVM bytecode) and is a subgraph of the procedure dependence graphs of these functions. In the graph, dotted
lines represent control dependences. Solid lines represent data dependences and are annotated with their types and usage context.

Connected Subgraph Lattice k-LG is a Connected Subgraph
Lattice containing only those subgraphs that are at least k
frequent in G according to some support measure σ.

The most natural definition of the support measure is
σ(JHKG) = |JHKG|, i.e., the number of unique embeddings
in H’s isomorphism class. Unfortunately, this definition does
not satisfy an important property of suitable support measures,
called the Downward Closure Property [14]. A measure that

1 def sample(N, graph, min_support):
2 for _ in xrange(N):
3 yield unweighted_random_walk(G, min_support)
4
5 def unweighted_random_walk(G, min_support):
6 prev = cur = G.root_lattice_node(min_support)
7 while cur is not None:
8 n = randchoose(cur.children()); prev = cur; cur = n
9 return prev

10
11 class LatticeNode(object):
12 def __init__(self, G, sg, embs, exts):
13 self.graph = G
14 self.subgraph = sg
15 self.supported_embeddings = embs
16 self.extensions = exts
17 def children(self):
18 G = self.graph
19 for sg_ext in self.extend():
20 support, exts, embs = exts_and_embs(G, sg_ext)
21 if support >= min_support:
22 yield LatticeNode(G, sg, embs, exts)
23 def extend(self):
24 exts = set()
25 for ext in self.extensions:
26 exts.add(self.subgraph.extend(ext))
27 return exts
28
29 def exts_and_embs(G, sg):
30 embs = list(); exts = set(); seen = set()
31 for emb in find_embeddings(G, sg, gis_pruner(seen)):
32 for emb_idx in embs.idxs:
33 for edge in G.children_of(emb_idx):
34 add_ext(G, exts, emb, edge, emb_idx, -1)
35 for edge in G.parents_of(emb_idx):
36 add_ext(G, exts, emb, edge, -1, emb_idx)
37 embs.append(emb)
38 return gis_support(embs), exts, embs
39
40 def find_embedddings(G, sg, prune_fn=None):
41 edges = spanning_tree(G, sg)
42 for edge in sg.edges:
43 if edge not in edges: edges.append(edge)
44 stack = list()
45 vembs = vertex_embeddings(G, sg, edges[0].src)
46 for emb_idx in vembs:
47 stack.append((ListNode(start_idx, emb_idx), 0))
48 while len(stack) > 0:
49 cur, eid = stack.pop()
50 if prune_fn is not None and prune_fn(cur):
51 continue
52 if eid >= len(spanning_edges):
53 yield embedding_from_ids(cur)
54 else:
55 for n in extend_embedding(G,sg,cur,edges[eid])
56 stack.append((n, eid+1))
57
58 def gis_pruner(seen):
59 def gis_prune(cur):
60 for n in cur:
61 if n.emb_idx in seen:
62 for m in cur: seen.add(m.emb_idx)
63 return True
64 return False
65 return gis_prune

Listing 1: Sample N k-frequent subgraphs.

is commonly used instead is Minimum Image Support (MNI)
[14]. However, some pathological cases involving patterns
with automorphisms (nontrivial isomorphisms from a sub-
graph to itself) and with overlapping embeddings can cause
exponential-time computations when MNI is used. We have
found that these actually occur in real programs. To circumvent
this problem we use an unsound support measure called
Greedy Independent Subgraphs (GIS).

An embedding n is directly connected to another embedding
m if any vertex in n is also used in m. The embedding
n is connected (possibly indirectly) to another embedding x
if there is some sequence of embeddings y1...yn such that:
the embedding n is directly connected to the embedding y1,
y1 is directly connected to y2, and so on, until yn−1 is
directly connected to yn and yn is directly connected to x.
An embedding n is said to be independent of an embedding
x if they are not connected by any sequence of embeddings.
Recall that automorphic patterns with overlapping embeddings
cause problems for MNI since there may be millions of unique
embeddings. However, one can short-circuit this computation
by computing the number of independent groups of embed-
dings in a greedy fashion. This yields the metric GIS, which
is implemented by the function gis_pruner in Listing 1.

C. Sampling Frequent Subgraphs

Sampling N frequent subgraphs can be accomplished by an
unweighted forward random walk on the connected frequent
subgraph lattice [13]. The process is outlined in Listing 1 and
is based on our previous work on GRAPLE [13]. Note the
listing is in Python for brevity but the actual implementation
is in the Go programming language. The core sampling
process (lines 1-9) remains the same as in GRAPLE but there
is a new algorithm for traversing the k-frequent subgraph
lattice. The new algorithm incorporates the GIS support metric
and pruning strategy into its subgraph matching algorithm
find_embeddings. The algorithm also merges the support and
candidate extension computations in exts_and_embs.

In Listing 1, the function sample does N walks over the
frequent subgraph lattice by calling unweighted_random_walk
repeatedly. Each walk starts at a LatticeNode representing
the empty subgraph. In every step of the walk a call is
made (line 8) to LatticeNode.children(), which computes
frequent super-graphs of the graph represented by the current
LatticeNode. One super-graph is selected at random to use for
the next step. The walk terminates when there are no frequent
super-graphs. The children method computes candidate fre-
quent super-graphs using the extend method. Each candidate
is computed from an “extension”, which is obtained by adding
a single edge to the graph represented by the LatticeNode.
After the candidates are computed, each one must be checked
to see if it is frequent. This is done by the exts_and_embs
function, which computes the frequency (support), the candi-
date one-edge extensions, and the supported embeddings for
the candidate frequent subgraph.

To compute the support for a subgraph, all of its em-
beddings need to be found. This is implemented by the

k=2 5
10-1

100

101

ti
m

e
 (

se
co

n
d
s)

 l
o
g
 s

ca
le

d
max=244

(a) ExprCalc

2 5
100

101

102 205 35

(b) Zookeeper

2 5
100

101

102 82 28

(c) DDH

2 5
100

101

102

103 291 65

(d) BCEL

2 5
101

102

103 421 88

(e) jGit

2 5
101

102

103

104 538 96

(f) Tomcat

2 5
101

102

103

104 371 83

(g) hBase

2 5
102

103

104

105 609 494

(h) OrientDB

Fig. 2: Execution time to sample 100 dependence clones from the subject programs. Box and whisker diagrams of execution time in seconds
of 50 runs of the Unweighted Random Walk sampling algorithm; each run collected a sample containing 100 frequent subgraphs. The number
on the top of the axis is the size (in # of edges) of the largest dependence clone found. The number on the bottom axis is the minimum
support (frequency) used.

find_embeddings method, which solves the subgraph match-
ing problem. This method implements a back-tracking tree
search procedure. The nodes in the search are partial subgraph
isomorphism mappings. The search tree for a subgraph H
has height |EH |, where |EH | is the number edges in H .
The search starts at a node mapping a single vertex in H to
some vertex with the same label in the graph G. It proceeds
edge by edge, building up a mapping until a full mapping
is obtained or back-tracking is performed by discarding the
current mapping and considering another partial mapping. If
the gis_pruner is supplied as the pruning function, prune_fn,
to find_embeddings then on line 50 there is a chance to
discard the current mapping. GIS discards the mapping if
any of the mapped vertices in it have already appeared in
a completed mapping.

While not shown in the listing, the implementation contains
several other optimizations to the embedding search. For
instance, it uses a lightweight index to ensure that candidate
vertices used to extend the current embedding have at least
the degree of the matching subgraph vertex.

IV. EVALUATION

A new dependence-clone sampling system was implemented
using the ideas described in Section III-C, and it was evaluated
in an empirical study. The study examined samples of 100
potential code clones from the eight subject programs de-
scribed in Table I. The sample size was chosen to represent the
maximum number of clones a single developer would likely
be able to review in a day. The study considered code cloned
in at least five locations as well as code cloned in at least two
locations, because code that is duplicated in more locations is
potentially more relevant to the programmer and can be found
more quickly with pattern mining methods. Since every sample
collection run collects a different selection of 100 potential
clones, there is variance in the amount of time it takes to
collect the sample. The variance was measured by collecting
50 independent samples with 100 frequent subgraphs in each
sample (see Figure 2).

To look at the scalability of the new implementation on
larger programs, OrientDB was examined with the addition

of all of its library dependencies – including generated code.
Thus, the OrientDB PDG includes code from both the ap-
plication and all of the non-application libraries. Since the
libraries were delivered as JVM bytecode no line count could
be determined. OrientDB generated around four times the
number of vertices as the next largest program – so the total
line count of OrientDB and its dependencies may be as large
as 2 MLOC.

The PDGs used in the study were generated by our tool
jpdg [13]. The evaluation was conducted on a dual-socket
server with 2010 Intel Xeon X5650 CPUs and 96 GB of
memory. Despite the large amount of memory on the server
used to collect the timing data, all computations ran well on
a laptop with 16 GB of memory. All used under 4 GB of
RAM except for those involving the OrientDB dataset, which
required around 10 GB of RAM. The memory usage was
dominated by storage for the graph index and varied only
slightly during the actual sampling procedure.

It took under 2 minutes to collect a sample of 100 five-
frequent subgraphs for all of the programs except OrientDB
(Figure 2). For the smaller programs, collecting a sample
required less than 10 seconds – making our new implemen-
tation suitable for desktop usage. For the smallest program,
ExprCalc, we were able to find all of the frequent subgraphs
(∼2.5 million at minimum support 2). The rest of the programs
had too many frequent subgraphs (>100 million) for us to
mine them all at minimum support 2 or 5. At support level 5
it yields only frequent subgraphs containing at most 4 edges.

TABLE I: The datasets used in the study. KLOC – Kilo Lines of
Code.

Dataset KLOC Nodes Edges Description
ExprCalc 0.8 1,110 2,162 Arithmetic calculator
Zookeeper 32.4 17,028 32,691 Distributed KV store
DDH 19.3 36,384 65,874 Anonymized

prorietary application
BCEL 28.6 52,731 108,542 JVM bytecode lib.
jGit 72.1 136,716 300,550 GIT in Java
Tomcat 220.7 377,657 806,824 Web server
hBase 561.4 442,063 981,577 Database
OrientDB N/A 2,022,640 3,476,158 Database & all

dependencies.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

²

0

20

40

60

80

100

(s
o
lid

 l
in

e
s)

#
 o

f
cl

u
st

e
rs

 f
o
r

2
-f

re
q
u
e
n
t

su
b
g
ra

p
h
s

BCEL (87)

ExprCalc (29)

hBase (98)

jGit (97)

DDH (86)

OrientDB (99)

Tomcat (98)

Zookeeper (79)

0.0

0.2

0.4

0.6

0.8

in
tr

a
/i
n
te

r
d
is

ta
n
ce

 r
a
ti

o
 o

f
cl

u
st

e
rs

(d
a
sh

e
d
 l
in

e
s)

Fig. 3: The mean number of clusters for samples of 2-frequent
subgraphs (solid lines; variances are shown as shaded regions), for
various choices of ε. Items α and β cluster together if δ(α, β) < ε
where δ is a distance metric between the items. The number next to
each dataset name is the average number of unique items sampled
when sampling (with replacement) 100 items total. The dashed lines
show the intra/inter cluster distance ratio – the closer it is to 0 the
better the clustering. The solid black line shows this ratio for random
clustering (the shaded area indicates the variance). If a dashed line
is below the black line it is better than random.

Larger 5-frequent subgraphs were found for rest of the subject
programs, ranging in size from 35 edges for Zookeeper to 96
edges for Tomcat to 494 edges for OrientDB (see the top axis
in Figure 2).

Programmers are potentially interested in regions of code
duplicated in just one other location. As shown in Figure 2, the
execution time required to collect a sample of 100 2-frequent
subgraphs was greater than the time for 5-frequent subgraphs.
The longest amount of time spent collecting a sample for any
program except OrientDB was 67 minutes, while the highest
mean time was 8 3

4 minutes. OrientDB took much longer —
as long as 10 hours. Recall that OrientDB is four times larger
than the next largest program, hBase, which has 500 KLOC.
Clearly, there is work left to be done on the scalability of PDG-
based clone detection. In the future, when detecting clones for
code review only the ones related to changed code need to be
found. Performance may also be improved by using a better
indexed subgraph matching algorithm [19] and incrementally
updating the PDGs [20], [21].

Another issue with code clones in general, but especially
with clones found from graphical representations such as
PDGs, is reporting multiple clones that are very similar to
each other. These “clone families” arise naturally since many
frequent subgraphs share common subgraphs with other fre-
quent subgraphs. When reviewing code clones, programmers
do not want to see very similar clones over and over again.
Future PDG-based clone detection systems should address
this problem. Towards that end, Figure 3 evaluates a simple
density based clustering algorithm, DBSCAN [22] (with no
minimum number of items allowed in a cluster). In density
based clustering, items α and β cluster together if the distance

between them, according a metric δ, is less than ε: δ(α, β) < ε.
In Figure 3 the δ metric is the Jaccard set similarity coefficient
applied to the sets of vertex labels of two subgraphs. Thus,
subgraphs that contain the same combination of operators,
method calls, and constants are placed together.

DBSCAN identified sizable “tight” clusters (as measured
by the intra/inter cluster distance ratio) of clones for 4 of the
subject programs (ExprCal, Zookeepr, BCEL, and DDH in
Figure 3). These clusters indicate the presence of clone fam-
ilies, which we confirmed with visual inspection. Identifying
these clusters reduces the programmer effort needed to review
the set of potential clones, since only a representative from
the cluster needs to be reviewed by the programmer. For the
other 4 programs (jGit, Tomcat, hBase, and OrientDB) most
of the sampled frequent subgraphs were distinct from each
other, and cluster quality was poor when they were grouped
together (as can be seen in the figure, for the higher settings for
ε). Future work could integrate an online clustering technique
into the sampling procedure to ensure adequate diversity in the
output. In addition, there are many other similarity measures
for graphs [23] and some of them such as graph kernels can
take into account the structure of graphs. Such measures may
perform better for this application and their utility for PDG-
based clone-detection should be evaluated. Semi-supervised
kernel graph clustering [24], which can exploit user feedback,
also merits consideration.

V. RELATED WORK

There are several recent surveys on finding and manag-
ing code clones [1]–[4]. Recent work by Sajnani et al. on
SourcererCC [6] showed that clone detection can scale to 100
MLOC when programs are represented as bags-of-tokens. It
took SourcererCC only 1 1

2 days to find all of the clones from
an artificially constructed code base consisting of 100 MLOC.
In the SourcererCC study, the latest version of CCFinder
[5] (CCFinderX) was competitive with SourcererCC on most
benchmarks in terms of time, precision, and recall.

Krinke’s Duplix algorithm [9] and Komondoor and Hor-
witz’s algorithm [10] were the first attempts at detecting code
clones from PDGs. Komondoor’s algorithm found pairs of
clones by slicing backwards and then forwards from matched
starting vertices. However, the forward slicing operation is
only applied when matching control vertices are discovered.
Komondoor also applies a variety of heuristics to filter out
certain types of clones. After pairs are identified, ones that
include the same locations are grouped together and sub-
graphs are discarded in favor of their super-graphs. Higo and
Kusomoto [11] created Scorpio, which extends Komondoor’s
algorithm to detect contiguous clones by adding links into the
PDG. Krinke’s algorithm Duplix is similar to Komondoor’s
but restricts itself to forward slicing up to a limit of k edges.
Both of these algorithms, unlike the one presented in this
paper, tend to find long paths through the PDG instead of
general subgraphs (containing any edge structure) such as
the one in Figure 1. Given the reported scalability problems
with Komondoor’s algorithm [2], Gabel et al. [25] proposed

mapping PDG nodes onto abstract syntax trees, which allowed
them to use a high performance clone detector for ASTs [7].
ModelCD [26] used the vSiGraM algorithm [12] to find clones
in Matlab/Simulink models. Nguyen et al. [27] introduced
groums for finding graph-based object-usage patterns using
a novel frequent subgraph miner. Jia et al. presented KClone
[28], which extends contiguous clones (found from tokens)
using local data dependence information. Finally, Higo et al.
[20] demonstrated an approximate incremental approach for
detecting clones from evolving PDGs.

Many algorithms have been developed for frequent sub-
graph mining [29]. The algorithm presented here is based on
GRAPLE [13], which is strongly related to the ORIGAMI
algorithm [30]. There are two other sampling procedures for
frequent subgraphs: Musk [31] and a Metropolis-Hastings
approach [32]. However, our experiments indicate that neither
can find patterns larger than around 15 edges.

VI. CONCLUSION

We have presented a new algorithm for sampling potential
code clones from program dependence graphs, using un-
weighted random walks over the frequent connected subgraph
lattice. The algorithm uses the greedy independent subgraphs
measure to prune the subgraph-matching search space, which
reduces the computation costs for difficult-to-mine program
graphs. Empirical results were presented that demonstrated
that the algorithm is capable of mining large programs. For
programs with at least 500,000 LOC it can sample clones fast
enough to be used either on the desktop or in a continuous
integration system for use during code review. The algorithm
presented does not use any heuristics or limit the size of
frequent subgraph found. Results were also presented for the
effectiveness of using density based clustering on the returned
clones. For half of the programs significant clusters were
found. The time has come to reconsider PDG-based clone
detection as part of a holistic strategy of clone management
and to develop clone management systems that integrate
multiple detection strategies.

REFERENCES

[1] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software clone
management: Past, present, and future,” in IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering, 2014, pp. 18–33.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, sep 2007.

[3] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, may 2009.

[4] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[5] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, jul 2002.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling Code Clone Detection to Big-code,” in Int.
Conference on Software Engineering, 2016, pp. 1157–1168.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in Int. Conference on
Software Engineering, 2007, pp. 96–105.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319–349, July 1987.

[9] J. Krinke, “Identifying similar code with program dependence graphs,”
in IEEE Working Conference on Reverse Engineering, 2001.

[10] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” Int. Symposium on Static Analysis, vol. 2126, 2001.

[11] Y. Higo and S. Kusumoto, “Code Clone Detection on Specialized PDGs
with Heuristics,” in European Conference on Software Maintenance and
Reengineering. IEEE, mar 2011, pp. 75–84.

[12] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a Large
Sparse Graph*,” Data Mining and Knowledge Discovery, vol. 11, no. 3,
pp. 243–271, nov 2005.

[13] T. A. D. Henderson and A. Podgurski, “Sampling Code Clones from
Program Dependence Graphs with GRAPLE,” in Int. Workshop on
Software Analytics. ACM, 2016.

[14] B. Bringmann and S. Nijssen, “What is frequent in a single graph?” in
Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining, 2008, pp. 858–863.

[15] A. Podgurski and L. A. Clarke, “A Formal Model of Program De-
pendences and Its Implications for Software Testing, Debugging, and
Maintenance,” IEEE Transactions on Software Engineering, vol. 16,
no. 9, pp. 965–979, sep 1990.

[16] S. Horwitz, J. Prins, and T. Reps, “On the Adequacy of Program
Dependence Graphs for Representing Programs,” in Symposium on
Principles of Programming Languages. ACM, 1988, pp. 146–157.

[17] A. Podgurski and L. Clarke, “The Implications of Program Dependencies
for Software Testing, Debugging, and Maintenance,” in Symposium on
Software Testing, Analysis, and Verification. ACM, 1989, pp. 168–178.

[18] R.-Y. Chang, A. Podgurski, and J. Yang, “Discovering Neglected Con-
ditions in Software by Mining Dependence Graphs,” IEEE Transactions
on Software Engineering, vol. 34, no. 5, pp. 579–596, sep 2008.

[19] K. Zhu, Y. Zhang, X. Lin, G. Zhu, and W. Wang, “NOVA: A Novel and
Efficient Framework for Finding Subgraph Isomorphism Mappings in
Large Graphs,” in Int. Conference on Database Systems for Advanced
Applications, 2010, pp. 140–154.

[20] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto, “Incremental Code
Clone Detection: A PDG-based Approach,” in Working Conference on
Reverse Engineering, oct 2011, pp. 3–12.

[21] A. Ray, L. Holder, and S. Choudhury, “Frequent Subgraph Discovery
in Large Attributed Streaming Graphs,” in Int. Workshop on Big Data,
Streams and Heterogeneous Source Mining, vol. 36, 2014, pp. 166–181.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based
Algorithm for Discovering Clusters a Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise,” in Int.
Conference on Knowledge Discovery and Data Mining, 1996.

[23] K. Riesen, X. Jiang, and H. Bunke, Exact and Inexact Graph Matching:
Methodology and Applications. Springer, 2010, pp. 217–247.

[24] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised graph
clustering: a kernel approach,” Machine Learning, vol. 74, no. 1, 2009.

[25] M. Gabel, L. Jiang, and Z. Su, “Scalable Detection of Semantic Clones,”
in Int. Conference on Software Engineering, 2008, pp. 321–330.

[26] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and
T. N. Nguyen, “Complete and accurate clone detection in graph-based
models,” in Int. Conference on Software Engineering, 2009.

[27] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering. ACM Press, 2009, p. 383.

[28] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita, “KClone:
A Proposed Approach to Fast Precise Code Clone Detection,” in Int.
Workshop on Software Clones, 2009.

[29] H. Cheng, X. Yan, and J. Han, “Mining Graph Patterns,” in Frequent
Pattern Mining. Springer, 2014, pp. 307–338.

[30] V. Chaoji, M. Al Hasan, S. Salem, J. Besson, and M. J. Zaki,
“ORIGAMI: A Novel and Effective Approach for Mining Representative
Orthogonal Graph Patterns,” Statistical Analysis and Data Minining,
vol. 1, no. 2, pp. 67–84, jun 2008.

[31] M. Al Hasan and M. Zaki, Musk: Uniform Sampling of k-Maximal
Patterns. SIAM International Conference on Data Mining, 2009.

[32] M. Al Hasan and M. J. Zaki, “Output Space Sampling for Graph
Patterns,” Proc. VLDB Endow., vol. 2, no. 1, pp. 730–741, aug 2009.

