
Speculative Testing at Google with Transition
Prediction

Avi Kondareddy∗, Sushmita Azad†, Abhayendra Singh‡, Tim A. D. Henderson§,
Google LLC

1600 Amphitheatre Pkwy
Mountain View, California, USA 94043

∗avikr@google.com †sushazad@google.com ‡abhayendra@google.com §tadh@google.com

Abstract—Google’s approach to testing includes both testing
prior to code submission (for fast validation) and after code
submission (for comprehensive validation). However, Google’s
ever growing testing demand has lead to increased continuous
integration cycle latency and machine costs. When the post code
submission continuous integration cycles get longer, it delays
detecting breakages in the main repository which increases de-
veloper friction and lowers productivity. To mitigate this without
increasing resource demand, Google is implementing Postsubmit
Speculative Cycles in their Test Automation Platform (TAP).
Speculative Cycles prioritize finding novel breakages faster. In
this paper we present our new test scheduling architecture and
the machine learning system (Transition Prediction) driving it.
Both the ML system and the end-to-end test scheduling system
are empirically evaluated on 3-months of our production data
(120 billion test×cycle pairs, 7.7 million breaking targets, with
∼20 thousand unique breakages). Using Speculative Cycles we
observed a median (p50) reduction of approximately 65% (from
107 to 37 minutes) in the time taken to detect novel breaking
targets.

I. INTRODUCTION

Continuous integration (CI) coordinates the development ac-
tivity of large numbers of developers [1]. When two developers
are working in the same portion of the code base, continuous
integration ensures that conflicting changes combine into a
conflict-free version before reaching the end user. In general,
adopters of CI execute builds and tests to ensure that the final
release artifact (server binary, mobile application, etc...) passes
all relevant tests. These build and tests are executed frequently
to reduce the amount of time conflicts are present in the code
base. Continuous integration is both a system and a practice
of automatically merging changes into a source of truth for an
organization’s source code and related artifacts.

For small software repositories and organizations, the imple-
mentation of continuous integration is well supported by off-
the-shelf software such as Github Actions, CircleCI, Jenkins,
and numerous other tools. However, as the repository and
organization scales up challenges emerge.

As an organization adds projects and engineers, there are
two distinct paths that emerge: the many-small-repository
path and the single-mono-repository path. Both paths have
distinct challenges and advantages. Neither path will enable
organizations to use vanilla off-the-shelf solutions for their de-
velopment environment. This paper is focused on a particular
challenge faced in a mono-repository environment at Google,

but similar problems arise in organizations with many small
repositories that are strongly coupled together.

Google, an early adopter of mono-repositories and contin-
uous integration [2], faces an enormous ever expanding code
base that is centrally tested by the Test Automation Platform
(TAP) [3]. As the code base and company grows, so does
the demand for compute resources for continuous testing.
Left unchecked, we have observed a double digit percentage
organic demand growth rate year-over-year (compounding).
Such a growth rate is untenable even for a large company
like Google. To prevent this unchecked growth in resource
demand, TAP has long had features that reduce demand by
skipping some tests (before submission) and batching many
versions together (after submission) to amortize the cost [4],
[5], [3], [6], [7], [8], [9], [10], [11], [12], [13].

In this paper, we are primarily concerned with testing
that occurs after the code has been submitted. We examine
how to improve the developer experience by finding novel
build/test breakages faster while continuing to control our
resource footprint growth rate.

A. The Google Development Environment

Google’s development environment uses a centralized repos-
itory [2] where code changes are managed with Blaze/Bazel1

and automatically tested, primarily by TAP. Developers write
code, build and test locally, then submit it for review via
Critique [14], triggering Presubmit checks. After review and
approval, changes undergo further checks before merging. Due
to high submission rates, Presubmit testing is limited to avoid
excessive resource consumption and delays.

B. TAP Postsubmit

When a developer’s change gets submitted it may still
have a bug that breaks an existing test or causes a compile
breakage in another part of the repository. To find these
bugs that have slipped through the pre-submission testing and
validation process, TAP also has a “post-submission” mode
(TAP Postsubmit).

In Postsubmit, TAP periodically (subject to compute re-
source availability in the Build system) schedules all tests
that have been affected (based on build dependencies) since

1https://bazel.build/

https://bazel.build/

the last run. We refer this execution cycle as Comprehensive
Testing Cycle. Previously, this cycle has also been referred
as Milestones [7]. There are two primary objectives for the
Comprehensive Cycle:

1) Uncover all test failures at the version comprehensive
testing was conducted at.

2) Provide project health signals for downstream services
to trigger more expensive testing and/or start production
rollout by triggering release automation

As of today’s writing, it takes ∼1-2 hours for a test broken
by a developer’s change to start failing in TAP Postsubmit.
Once the failure is detected automatic culprit finders [11]
and rollback system [12] will spring into action to help
keep the repository healthy and our developers productive.
Automatically rolling back the change (after the first breakage
was detected) might take as little as 30 minutes or as long
as several hours depending on a number of factors. Thus, it
could be 4 hours or more before our developer learns they
have broken a test and either been notified or automatically
had their change rolled back.

C. Cost of Breakages

The longer it takes to identify and fix a code breakage,
the more challenging and expensive the remediation process
becomes. This delay can lead to a loss of context for the
original developer, potentially requiring teammates to resolve
the issue. Additionally, a bad change can affect other devel-
opers, especially if it occurs in widely used parts of the code
base. When interrupted by such a failure programmers need to
distinguish between the change they are making and existing
fault in the repository. Ultimately, prolonged breakages can
disrupt release automation and even delay production releases.

D. Our Contributions and Findings

In this paper we are looking to increase developer produc-
tivity by reducing their friction with respect to broken code in
the main code base. Specifically we are solving the following
problem.

Problem: How can CI minimize the time between
the submission of a faulty change and its identification
within a continuous integration (CI) system to acceler-
ate the detection and mitigation of bugs?

To solve the problem, we propose a new scheduling mode to
our CI system, Speculative Testing Cycles, that opportunisti-
cally runs a small subset of tests to uncover novel failures
and reduce the mean time to detection (MTTD) for new
failures. Speculative Cycle prioritizes finding novel breakages
by identifying tests that are very likely to fail. The new
scheduling mode is driven by a Transition Prediction model
that predicts when tests are likely to (newly) fail. It utilizes
shallow machine-learning to run a smaller batch of tests
predicted to be more likely to be broken at higher frequency in
order to find breakages faster. We discuss both the design and
constraints on the production Speculative Cycle system and the

shallow machine-learning model (Transition Prediction) that
powers this predictive test selection.

While the production system is highly tied to Google’s
unique development environment and organizational con-
straints (i.e.: large monorepos with centralized CI infrastruc-
ture), our ML model presents a very coarse-grain approach
to prediction for test selection using test and code-under-test
metadata that has equivalents in most development environ-
ments and is language/framework agnostic.

Our contributions in this paper are therefore:
1) Speculative Cycles: A system for frequent / cost-aware

batch testing.
2) Transition Prediction (TRANSPRED): Predicting target

status transitions (Pass to Fail) for arbitrary build & test
targets. With a budget of 25% of the total targets, Tran-
sition Prediction achieves a 85% recall rate in detecting
breakages.

3) A very large scale study (utilizing 3-months of production
data: 120 billion test×cycle pairs, 7.7 million breaking
targets, and ∼20,000 unique breakages) on the efficacy of
Speculative Testing using Transition Prediction evaluating
its performance against randomized testing.

4) A comparative assessment of dataset and training con-
figurations for Transition Prediction, determining that the
selection of features and the length of the training window
substantially influence the system’s performance.

II. BACKGROUND

A. Developer Services

1) Bazel: Google uses Bazel as its build system monorepo
wide. Bazel allows specifying build/test “targets” that depend
on other targets. Each target is comprised of a set of “ac-
tions” to be executed. Therefore, the execution of a target
corresponds to a Directed Acyclic Graph (DAG) of actions.
Given Bazel makes dependency management declarative and
all dependencies are built at the same version of the codebase,
builds are ostensibly held to be hermetic – builds at the same
version of the codebase should produce the same output for
each action. This opens up the possibility for massive com-
pute savings through caching of intermediate actions across
multiple builds.

2) Forge: Build/Test actions at Google run under a cen-
tralized compute cluster called Forge which attempts to cache
these intermediate actions to avoid recomputation at the same
version of the codebase. For Postsubmit testing, we make use
of this caching by batching builds/tests at single versions every
hour or so.

B. Comprehensive Testing Cycles

In the standard case, TAP Postsubmit performs each Com-
prehensive Testing Cycle once the previous cycle’s active
consumption of resources drops below a threshold of their
allocated build system resources. This cycle consists of picking
a recent change(snapshot of the repository), at which we
batch and run a ”comprehensive” set of tests. Comprehensive
cycles run all tests that are “affected” since the previous cycle.

“Affected” is our term for dependence as implied by the build
system’s package graph, allowing us to perform a degree of
static test selection at a coarse granularity.

C. Ancillary Systems For Build Gardening

The development life cycle explained above relies on Post-
submit testing to make up for the lack of comprehensive testing
prior to submission. This introduces the concept of Postsubmit
breakages which are caught sometime after submission. The
process of detecting the breakage, identifying the cause of the
breakage (culprit finding), and fixing the breakage (sometimes
via a rollback) is called “Build Gardening” at Google.

1) Culprit Finding: We have previously outlined Google’s
culprit finding approach in [11], [12]. To formulate the prob-
lem, we are given a test/build “target” and must determine at
which change C over a range of sequential changes [A,B] did
the target start breaking. The change C is referred as a Culprit
Change or simply Culprit. Given the presence of build/test
non-determinism (“flakes”), we want to find the change at
which the test was “truly” failing but “truly” passing at the
previous change. Our previous work explores how we do this
in a time and run-efficient manner using a historical flake rate
aware Bayesian model to sample runs.

2) Culprit Verifier: Unfortunately, persistent flakiness and
non-determinism can still slip by the culprit finders. The
pathological case is that of build system non-determinism.
Google’s build system Bazel assumes that builds are hermetic
and should produce the same output at the same version.
This assumption means that unlike tests, failed actions are
cached by the build system so immediate reruns will continue
to assert what could potentially be a flaky build failure. The
culprit verifier does extensive reruns on a subset of culprit
conclusions produced by the culprit finders. We sample from
two different sampling frames: (1) a simple random sample of
all conclusions produced and (2) the first conclusion produced
for each uniquely blamed culprit. For details on the design of
the verification system, see the Flake Aware Culprit Finding
paper [11] and the SafeRevert paper [12].

Although the verifier is fallible, the dataset it produces
is still the most accurate representation of true breakages
at Google. We know it fails because we have seen specific
examples of its failures. But, from a measurement perspective,
bounding its accuracy is challenging because its failure rate is
low enough that it exceeds our ability to accurately measure.
We have recently conducted manual verification while launch-
ing a new version of our Auto Rollback system on all culprits
rolled back during the “dogfood” phase (an opt-in beta). Out
of 250+ hand verified culprits: 5 were incorrect culprits from
the culprit finder, 2 incorrect culprits were incorrectly verified
correct by the verifier. This gives us an estimated culprit
finding accuracy of 98% (matching verifier produced accuracy
dashboard) and a verifier accuracy of 99.2%. Given the low
sample size the confidence interval on that measurement is
99.2 ± 3.3% which is too wide. To get sufficient power to
accurately estimate the verifier accuracy, we would need to
hand verify at least 5000 culprits.

Thus, while we are confident in the overall accuracy
measurements provided by the verifier, we acknowledge that
“ground truth” is difficult to obtain. We utilize the dataset
produced by the verifier to label the culprits to train our pre-
diction model (detailed below). This approach vastly reduces
the impact of flakiness on our model training data.

3) Autorollback: At Google, there is a developer guideline
to prefer rollbacks to fix forwards. Given this context, it is
appropriate to automatically roll back a change if someone is
confident that the change broke the build. Unfortunately, given
the accuracy issue of the culprit finder described above, we
can’t immediately rollback upon a culprit finding completion
for one target. In the SafeRevert paper [12], we discussed
how we attempt to determine the amount of evidence needed
to proceed with a rollback. In practice, we currently restrict
rollbacks to changes that break at least 10 targets.

D. The Evolution of TAP

Prior to development of TAP, Google had a more traditional
continuous integration system. Primarily, the decision to run
continuous integration was left up to individual teams and the
system that existed was federated: teams brought their own
capacity (machines, possibly under their desks) and had to
configure and run the CI system(s). TAP, upon launch in 2009,
was a massive improvement from setup and continuous main-
tenance perspective alone. Unlike the previous systems, TAP
ran all builds centrally and only required a small amount of
configuration: it simply required users to specify which paths
they would like to test and where the (failure) notifications
should go.

The central builds and low configuration overhead made
TAP immediately successful. Within a few years it had com-
pletely displaced the prior system. But, success came at a
price: it was plagued by build capacity limitations and scala-
bility challenges stemming from design decisions of running
tests on each change in the initial implementation. By 2012
(following a full launch in 2010) Google was running low on
machine capacity to run TAP. The testing model had naively
assumed that the build dependence based test selection would
be enough to control demand; It was not.

TAP both pre- and post-submit were thus rewritten (multiple
times). TAP Presubmit now has several different modes, adapts
to resource availability, uses machine learning driven test
selection, and has “advisors” which can ignore or rerun tests
on failure [13]. Unfortunately for you (the reader) discussing
these innovations is out of scope for this manuscript.

Today, TAP Postsubmit no longer runs on every change. It
waits for there to be capacity in the Build System [9], [10] and
then enqueues all tests that have been affected since their last
definitive status. At Google’s scale and growth rate, we have
had to continuously innovate and rewrite core parts of TAP
just to maintain this model. However, we have long known
that just using build-graph dependency based test selection
in Postsubmit was untenable in the long term [7], [8]. It
is only now that we have both the high-accuracy culprit
finding infrastructure [11], [12] and the organizational will to

fundamentally change (again) core assumptions for how TAP
works.

E. The Current Dilemma

The cost of TAP Postsubmit’s comprehensive testing contin-
ues to rise due to ever-increasing compute demand, increasing
fleet machine diversity, and evolving development practices.
This means that with no systemic changes in our approach
towards Postsubmit testing:

1) Teams start needing to wait longer and longer for signal
on their projects’ health (or “greenness”) from TAP
blocking their releases which has significant monetary
impact

2) Developers are now alerted hours after they submit of a
breaking change, creating developer toil

III. SPECULATIVE TESTING CYCLES

In order to protect release quality and improve developer
productivity, TAP is introducing Speculative Testing Cycles -
a process by which we non-deterministically select a smaller
subset of targets that we deem more likely to fail, and run
this smaller set more frequently than traditional comprehensive
cycles. For traditional comprehensive test cycles, we attempt
to batch as many builds/tests together at the same change as
possible to get the caching benefits from Forge. We do the
same here for Speculative Cycles, picking a single change
approximately every 20 minutes, Forge build resources allow-
ing. As with Comprehensive Cycles, we first perform static
build system level dependency analysis to find all targets which
could have a status change.

A. Determining Breakage Likelihood

We now have a set of statically-filtered targets {T} and a
sequence of commits {C} consisting of all commits since the
last Speculative Cycle. Our problem is then to determine for
a given target t ∈ T : what is the likelihood it was broken by
a change c ∈ C affecting it? For compute tractability, given
the frequency of change submissions and number of targets
in our codebase, we simplify by choosing to aggregate across
C and ask: “Was target t broken by any change in C?” We
identify this problem formulation and approaches to answer it
as Transition Prediction, and discuss it in detail in the next
section.

B. Making Scheduling Decisions

Our Transition Prediction model gives us “scores” from
0 to 1 indicating the propensity of this target to be newly
broken. Given that we rely on machine learning models for
these predictions, we must be careful to note that these
scores do not meaningfully represent probabilities. They are
the product of an algorithm attempting to minimize a loss
function relative to its training dataset. While they can be
colloquially understood to imply likelihood and allow relative
comparison, moving the threshold at which scores map onto
decisions to (not) schedule will produce non-linear changes to
the actual observed probability of finding a breakage (“recall”)
or scheduling false positives (“false positive rate”).

At Least N Targets Broken

R
em

ai
ni

ng
 %

 o
f C

ul
pr

its

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50

Fig. 1: The proportion of culprit changes remaining as we filter for minimum
number of targets broken. Close to 50% of culprits break only a single target.
The curve quickly flattens out giving us a reliable and tractable quarter of
culprits having broken at least 10 targets.

Given this fact and our desire to have stable execution
cost/latency under our scheduling scheme, we choose to pri-
marily rank targets and schedule the top-k highest ranking
targets under some top K parameter. For the purpose of this
paper, this is our main parameter for tuning the Speculative
Cycle system while the remaining knobs exist in feature se-
lection and training configuration for the Transition Prediction
ML model.

C. Goal of Finding Test Breakages

As we’ve discussed, Postsubmit testing feeds into both
Release pipelines and the breakage triage/fixing workflow
(what we call “Build Gardening”). Release implications of
Speculative Cycle(s) depend on many several other projects
at play which are outside the scope of this paper. The direct
outcome is that newly detected build/test failures will now
propagate to Build Gardening consumers faster, namely:

1) Developers directly through emails sent upon detection
of a failure

2) Automated Culprit Finders that attempt to identify the
specific culprit change

3) Auto-Rollback reverts changes once it acquires enough
evidence from culprit finders

A developer or the automated culprit finders may only
need a single target breakage (We will denote this criterion
as AtLeast(1)) to consider investigating and to identify a
breaking change that needs to be reverted. But given the non-
determinism issues discussed above, auto-rollback requires
a stronger signal – at least N distinct targets were culprit-
found to the same change (AtLeast(N)). Both these goals
are important to the health of the codebase, and while the
former is a simple and more intuitive metric, there is a strong
argument to be made for the latter – in that the number of
distinct broken targets is a good proxy for the cost of that bad
commit. The larger the number of broken targets, the larger
the likelihood that it falls under a configured Presubmit testing
directory, impacting developer productivity like we discussed
above. Targets could belong to multiple release-level project

groups, and more targets being broken is a higher cost to
overall release health with more automation and production
pushes being delayed or blocked. Figure 1 presents the total
proportion of culprits remaining as we increase N which
follows a power law distribution.

D. Evaluating Performance

Culprit detection is then split between Comprehensive and
Speculative Cycles. Under a specific scheduling scheme, Spec-
ulative Cycles successfully detect some proportion of culprits
before Comprehensive Cycles. This proportion is the recall
of the system. This recall in combination with the actual run
frequency and execution runtime of the two cycles determines
the actual reduction in culprit detection latency, where latency
is defined relative to the submission time of the culprit change.
Depending on the consumer, latency improvements will have
non-linear marginal payoffs. For example, reduction from half
a day to an hour may have measurable impacts on development
friction caused by failing tests, but reduction from a half hour
to 10 minutes may be negligible. Therefore, both metrics can
be compared to the cost of a specific scheme in order to justify
value / viability of the system.

IV. TRANSITION PREDICTION

Transition Prediction (or TRANSPRED for short) attempts
to predict transition likelihood every 20 minutes for millions
of targets with a submission rate of over tens of thousands
of changes per day. In order to make this tractable and
most importantly cost-beneficial relative to simply running
more tests, our predictions must be cheap and low latency.
This informs using simple tree-based model techniques like
Gradient Boosted Decision Trees and Random Forests. Tree-
based models are used across industry for being low cost for
inference, avoid over-fitting, and achieve high performance
with simple coarse grained features like change and target
metadata. We have found consistently throughout our work
that Gradient Boosted Tree models perform best for Google’s
coarse grained test selection problems.

A. Features

Figure 2 shows an overview of the structure of the feature
vector. In a production system, only features that can be
acquired quickly and reliably at scale can be used. The end-to-
end latency of deciding which tests to run (including fetching
the data, assembling the feature vectors, and running the
prediction) needs to be well under 20 minutes such that the
current Speculative Cycle finishes before the next one begins.
Thus, we are using simple, cheap to compute, coarse grained
metadata features from targets and commits. The predictions
are done per target so the features for one target are included
in each feature vector. However, the predictions are not done
for a single commit but across a range of commits. To increase
the robustness of the commit based features, we only include
commits that affect the target. A commit affects a target if the
target is reachable in the build graph from the files modified
in the change.

TABLE I: Example features used in our model. The production model uses
’BASE’ features, while ’AUG’ features were added for this paper. We have
a total of 38 BASE features and 11 AUG features.

Type Example Features

BASE

Commit Metadata
reviewers, # approvers
of bugs: associated and fixed
Lines of code

Presubmit History
passing Presubmits over 28 days
failing Presubmit results over 28 days
failing Presubmits in the cycle window

Postsubmit History # passing runs over 28 days
flaky runs over 28 days

Commit Features Minumum build graph distance [7]

AUG

Commit Features # of robot authors

Target Metadata Target Language (eg: Java, C++, sh)
Target Type: build vs test

Additional History # true breakages over 28 days

Target level features include static and dynamic characteris-
tics. The static items are unchanging (or very rarely changing)
and include target’s programming language, whether it is a
test or build target, and its Bazel rule type, etc. The dynamic
items are based on historical execution data, such as the failure
count in Postsubmit and Presubmit over several different time
windows. Commit level features include: change metadata like
lines of code modified, number of reviewers, number of linked
bugs, description, etc. Finally, some features correspond to
the relationship between the target and the changes in this
specific cycle – specifically its build graph distance to the files
modified and whether the target was run at Presubmit time.

Table I contains details on the features used in the produc-
tion model (‘BASE’) and those added for this paper (‘AUG’),
for augmented).

B. Labeling

Our data set has a row/vector for each target in each
Speculative Cycle. In order to train the model, we need to label
each vector with whether or not that target should be run in the
given Speculative Cycle. Optimally the targets should only be
run when a new failure is introduced into the repository. We
use the verified culprits data set described previously [11],
[12] as our source of truth on which commits introduced
breakages. Unfortunately, the automated culprit finders de-
prioritize comprehensiveness in favor of finding results quickly
for active breakages blocking developers. This can leave some
target level breakages with no culprit-identifying labels for up
to two weeks after the failures was detected.

In addition, some flakiness in tests and builds may be caused
by something outside of the code and configuration checked
into the repository. For example, a buggy compiler action may
non-deterministically miscompile a file causing the linker to
fail when it happens. Because the compile action “succeeds”
(produces an output and no error code), the output of the
compiler (the object file) will be cached. Subsequent builds
will re-use the cached output and fail when attempting to link.
However, if the cached item expires or the build happens in
a different data center with a different cache the linker action

Fig. 2: Static target features like type of target and language are combined with commit metadata such as number of lines of code modified, number of
reviewers etc to form the final feature set

may succeed (when the compiler behaved correctly). This type
of flakiness is difficult to diagnose real-time with only build
re-executions due to the multiple layers of caching. However,
build executions separated in time have a better chance of
identifying the flaky behavior.

In order to protect against unavailability of data, we perform
labeling a full week after the inference examples are acquired.
As we’ve described, this still does not completely shield us
from both incorrect positives and lack of coverage but is the
best ground truth we have.

C. Super Extreme Class Imbalance

Postsubmit breakages are exceedingly rare. The only target-
vector rows in our dataset that need to be scheduled are targets
that are newly broken. This only occurs 0.0001% of the time.
In model training, we refer to the class with fewer examples
at the minority class while the class with more examples is
the majority class. In our problem, the minority class is these
newly broken targets just described.

When there are too few examples in the minority class, the
effectiveness of the many training algorithms is reduced. The
“loss” (e.g. the function model training is optimizing) becomes
biased towards the majority class. A classic pathological case
is a model that trivially predicts the majority class – that
is, predicts the majority class every time and never predicts
the minority class. These models will actually minimize the
loss function even though they never make useful predictions.
Our approach must guard against these biases if we want to
usefully predict which tests to run during a Speculative Cycle.

For our system, we downsample the negative class (targets
that are not newly failing). This reduces the imbalance between

the classes. It also implicitly values the True Positives (new
breakages) higher than the True Negatives. Every false nega-
tive (missed breakage) leads to developer toil as the detection
of the breakage is delayed. Given the super extreme imbalance
between the classes, we expect most targets run during a
Speculative Cycle are to be False Negatives (and not indicate
a new breakage).

D. Training Configuration

For our model, we use the Yggdrasil Decision Forest
library (YDF) [15]. YDF touts superior decision tree sam-
pling and splitting algorithms over prior algorithms (such as
XGBoost [?]) and provides better integration with Google’s
machine learning infrastructure.

Conventional training schemes randomly shard their dataset
between train, validation, and test splits or perhaps perform
cross-validation with a set of parallel splits. For our problem,
randomized splits are harmful and lead to us overestimating
our performance as we leak time-dependent attributes of the
repository across sets. Instead, we create time-ordered splits
where the train set consists of the first A days, the validation
set the next B days, and the test set the final C days.

V. EMPIRICAL EVALUATION

A. Evaluation

We empirically evaluated Speculative Cycles against a base-
line random scheduler on culprit-detection recall and against
an optimal algorithm for evaluating culprit detection latency
improvements. We evaluated different dataset pruning/selec-
tion and training configurations to discover important hyper-

parameters for the Transition Prediction model on a standard
set of features. We examined three research questions:

B. Research Questions

RQ1: What is the performance of Speculative Cycles with
Transition Prediction in terms of percentage of novel
breakages detected (recall) in comparison to a baseline
randomized testing approach?

RQ2: Speculative cycles compete with full testing cycles
for machine resources. Do speculative cycles improve
productivity outcomes for Google developers?

RQ3: What aspects of the model design most impact system
performance? Considered aspects include features se-
lected, super-extreme class imbalance corrections, and
training environment.

C. Measuring Performance (Recall)

Speculative Cycles as a system attempts to detect bug
introducing changes (culprits) through running and surfacing
at least N newly failing targets. Specifically, the goal is
to capture the majority of (newly failing) target results that
detect novel bugs introduced into the repository with the
faster Speculative Cycles instead of the slower Comprehensive
Cycles. This naturally lends itself to measurement in the form
of recall – the percentage of these events we capture.

We additionally observe that our dataset is imperfect. Not
every commit labeled as a “culprit” is indeed a bug introducing
change. As discussed above, our datasets contains some inac-
curacies particularly when a particular culprit commit only
a few targets “blaming” it.2 The distribution in the number
of targets blaming a culprit follows a power law distribution.
The majority of culprits are blamed by fewer than 10 targets.
However, the lower the number of blamed targets the more
likely it is that the culprit finding was inaccurate and that the
commit does not in fact introduce a bug. In our labels, the
signal is highest for culprits with many targets blaming them
and lowest when there is only a single target. To protect our
system from the noise these “small” culprits are filtered out
during training.

We use AtLeast(n) to denote the subset of culprits that
have at least n targets blaming each culprit. In our evaluation,
we provide recall over both (a) AtLeast(1) - the set of all
culprits and (b) AtLeast(10) - the set of culprits causing
at least 10 target breakages where we successfully detect 10
breakages. AtLeast(10) also ensures that we meet the (tra-
ditional) minimum required threshold (i.e. 10 failing targets)
to trigger an automatic rollback. Speculative Cycles sees its
highest value in terms of mean time-to-fix when automatic
rollbacks are correctly triggered (especially for commits that
have wider impact radius). Therefore, by assessing Recall us-
ing AtLeast(10) we also assess whether or not the Speculative
Cycle can find enough evidence to trigger rollbacks.

2When a target breaks we perform culprit finding. The conclusion of the
culprit finding is the culprit commit. We colloquially say the target is blaming
the culprit.

D. Measuring Productivity Outcomes (Latency Improvement)

Although recall is a concrete metric, our true goal is to
improve productivity by reducing friction caused by breakages
that slipped into Postsubmit. Speculative Cycles focuses on
early detection of breakages (and their culprit detection and
fix) to reduce the friction caused by bad commits in Post-
submit. Its impact is measured by the reduction in “breakage
detection latency”. Early detection and fix also improves the
mean time to fix latency for bad commits. We will evaluate the
“breakage detection latency” decrease as a percentage relative
to the current latency using empirically observed timings for
running both Speculative and Comprehensive over the days
present in our test dataset.

E. High Priority Configuration of Training Scheme

In general, it is considered good practice in machine learn-
ing to prioritize dataset quality over attempting to fine tune
model level hyper-parameters. We have similarly observed
little value in specific training parameters and use YDF’s
defaults for Gradient Boosted Trees for this work to show
the general case performance expected. The more interesting
questions that pertain to our dataset configuration are:

1) Training Split / Window Size: As we use time based
splitting to avoid the issue of “time-traveling” across the
datasets, our training split configuration determines both the
training “window size” and the “delay” between the training
and test datasets.

We hypothesized that the training data may have some
recency bias. A shorter/ more recent look-back horizon on the
training data may contain more useful signal for predicting
the likelihood of a target transitioning. A longer window
could dilute the usefulness of more recent breakages, while
introducing noise from old breakages that have since been
fixed and are less likely to reoccur. In order to test this
hypothesis, we ran the model five times using the same feature
set and configuration, only changing the number of weeks of
data used during training. Note that our production pipeline
uses a 3:1:1 week split for training:test:validation.

2) Downsampling and Upweighting: Our extreme class
imbalance of 40, 000 : 1 necessitates downsampling our
negative class to a ratio that is compute-efficient, but also
avoids trivially predicting 0. Upweighting the positive class
can be useful to appropriately value positive examples with
respect to the loss function of the training algorithm. The ratios
of down-sampling listed above reduced our class imbalance
ratio to 400 : 1, 200 : 1, and 40 : 1 respectively. For each case,
we then upweighted the positive samples of target breaking
commits by the new class imbalance ratio to see what effect,
if any, it had on improving model performance.

F. Dataset

Our evaluation dataset consists of roughly 3 months of
Transition Prediction data split across Train, Validation, and
Test sets. In total, the dataset consisted of 120 Billion target-
cycle pairs, 7.7 million of which were breaking targets. This
corresponds to ∼20 thousand unique culprits. As mentioned

above, we ensure that our splits are entirely sequential and
disjoint to avoid cross contamination. The exact split and
training configuration is varied while answering RQ3. We then
fix our most performant model for evaluating RQ1 against the
BASELINE random prediction and for RQ2 against latency in
the CI environment with only Comprehensive Cycles.

VI. RESULTS

A. Summary of Results

Note: For RQ1 and RQ2, the model was trained using
the ’AUG’ feature set (Table I), a 3-week training
window, a 0.01 downsampling rate for the majority
class, and no upweighting for the minority class. This
configuration matches our production model, except
for the feature set. RQ3 explores performance across
configurations.

RQ1: What is the performance of Speculative Cycles with
Transition Prediction in terms of percentage of novel break-
ages detected (recall) in comparison to a baseline randomized
testing approach?

Summary: TRANSPRED demonstrates superior recall
compared to the BASELINE model across all budgets
(see Figure 3). At a budget of 25% of the total targets,
TRANSPRED achieves a recall of 85%, greater than the
BASELINE model’s recall of 56%. This highlights the
model’s effectiveness in identifying breaking changes
with limited resources.

In the context of Transition Prediction, recall measures
the percentage of breaking changes identified using a given
budget. The budget parameterizes the recall metric as shown
in Figure 3. To simplify the complex accounting of machine
and test costs, we use the percentage of targets scheduled by
TRANSPRED (versus a Comprehensive Cycle). Our budget
for this assessment is 25% of the targets that would have been
used by a Comprehensive Cycle. Recall is then defined as
percentage of culprits identified out of the total set of culprits.

Figure 3 provides a visual representation of how recall
changes as the percentage of scheduled targets varies, compar-
ing the performance of TRANSPRED against the BASELINE
model. For each model the figure shows the recall of both
AtLeast(1) and AtLeast(10). AtLeast(1) corresponds to
finding any target for a breakage or informally, that breakages
are at least ”identified”. The recall for AtLeast(10) concen-
trates on finding breakages with at least 10 targets broken –
including scheduling at least 10 of those broken targets to
ensure auto rollback has enough evidence to trigger.

For TRANSPRED, the AtLeast(10) recall is higher than
the AtLeast(1) recall. This indicates the model is better at
catching bad commits that break 10 or more targets. It’s
intuitive that larger breakages would be better handled by the
model as they are much better represented in the dataset, but an
interesting result that we have is better coverage of them, i.e.,

% of Targets Scheduled Per Cycle

%
 o

f C
ul

pr
its

 C
au

gh
t

0

25

50

75

100

0 25 50 75 100

AtLeast(10) Baseline AtLeast(10) Model AtLeast(1) Model AtLeast(1) Baseline

Fig. 3: System culprit recall when scheduling K% of affected targets using
Transition Prediction versus using the Baseline (a random subset of targets).
Performance is evaluated against AtLeast1 and AtLeast(10) detection criteria.
We use AtLeast(10) as it matches auto-rollback criteria. Performance actually
improves for the model as we go to AtLeast(10) indicating that the model is
much better at detecting members of larger breakages.

consistently finding more individual targets broken by such
commits. Culprits that only break a few tests are arguably less
consequential than the few culprits that break a large number
of tests. This strong performance on commits that break at
least 10 targets indicates that when TRANSPRED does find
a break, it has a good chance to be rolled back automatically
(see Section II-C3).

Both configurations for TRANSPRED outperform the
BASELINE random model, indicating that the model is learn-
ing something useful from metadata and that the metadata
alone (without considering the content of the changes) can be
predictive of breakages. We look forward to future experiments
utilizing the content of commits that compare both the efficacy
and the model costs.

RQ2: Speculative Cycles compete with full testing cycles for
machine resources, what configurations of Speculative Cycles
improve productivity outcomes for Google developers?

Summary: Speculative Cycles reduce the median (p50)
breakage detection latency by 65% (70 minutes) over
the existing Comprehensive Cycles.

Figure 4 visualizes a histogram of the performance of the
model in terms of breakage detection latency. We consider
this metric to be the “outcome metric” for this work as it
is a proxy for improving overall developer productivity. It is
known from internal work that developer productivity degrades
when they need to debug build and test breakages they did
not cause during interactive development. Productivity also
degrades when they are interrupted to troubleshoot releases
stalled due to breakages. By reducing the total time from
culprit commit submission to detection, the model reduces the
amount of friction developers experience from breakages.

As with RQ1, we have fixed TRANSPRED to represent
Speculative Cycles using the same Transition Prediction model
and scheduling 25% of targets. In the visualization, the model
(in black) is compared against two alternatives. The first
labeled “Only Comprehensive” shows the distribution of time

Detection Latency (Minutes)

of

 C
ul

pr
its

 C
au

gh
t

0

20

40

60

80

0 25 50 75 100 125 150 175 200 225 250 275 300

Only Comprehensive Optimal Model

Fig. 4: Histogram of culprit detection latency comparing detection using only
Comprehensive Cycles (Only Comprehensive) to Speculative Cycles using
Model vs traditional comprehensive test cycles

(in minutes) it takes the current TAP Postsubmit scheduling
algorithm (Comprehensive Cycles) to detect breakages. The
second alternative, “Optimal” imagines a perfect model that
always correctly predicts which target need to be scheduled.
Our model, TRANSPRED, falls between these two extremes
of no-improvement to full-improvement. Observe that in com-
parison to “Only Comprehensive” the variance of breakage
detection latency for TRANSPRED is substantially reduced.
While, the new model isn’t perfect (as shown in the figure), it
is a welcome result that the Speculative Cycles reliably finds
culprit commits in 37 minutes in the median case (p50), a 65%
latency reduction over traditional Comprehensive Cycles that
(p50) take 107 minutes.

RQ3:What aspects of the model design most impact perfor-
mance? Considered aspects include features selected, super-
extreme class imbalance corrections, and training environ-
ment.

Summary: The feature set used and the training
window length had the greatest impact on model per-
formance as measured by ROC AUC. Downsampling
is critical for training speed but further downsampling
hurts performance while upweighting has negligible
impact.

To better understand how model design impacts perfor-
mance, we ran multiple experiments across the different axes
of decision making, including 1) feature selection, 2) training
environment. and 3) different ways to correct for the super-
extreme class imbalance

1) Feature Selection: Table III shows an improvement
in performance when the model is trained on the ‘AUG-
MENTED’ feature set vs ‘BASE’ set, regardless of number of
weeks considered for the training window. Critically, we see
a lot of signal coming from the added target history features
over longer time intervals.

2) Training Environment: Table III indicates our hypothesis
was correct – performance starts to degrade as we increase or
decrease the training window length from the optimal 3 weeks.

TABLE II: Model performance at different levels of downsampling on the
majority class of non-breakages, with and without upweighting the minority
positive class of breaking targets within a commit range.

Majority Class
Downsample Ratio

Minority Class
Upweight Factor

AUC

0.01 1 0.824
0.005 1 0.814
0.001 1 0.815
0.01 400 0.818
0.005 100 0.822
0.001 40 0.826

TABLE III: Comparing the effects of training window lookback with the
base set of features used in our case study of the production pipeline vs an
augmented feature set that includes extra commit and target metadata that are
not currently used.

Training Data
Lookback Window

BASE Features
AUC

AUG Features
AUC

1 week 0.790 0.791
2 weeks 0.779 0.808
3 weeks 0.815 0.824
4 weeks 0.808 0.817
5 weeks 0.778 0.782

3) Correcting for Super-Extreme Class Imbalance: Produc-
tion systems exhibit extremely low Postsubmit breakage rates
(40,000:1 in our case). This class imbalance can hinder model
training by biasing it towards the majority class. However,
due to the asymmetric cost of false positives (unnecessary
execution) versus false negatives (late breakage detection),
prioritizing catching newly breaking targets at the cost of
incorrectly scheduling some healthy targets is acceptable. This
lets us experiment with some imbalance-correction techniques
without being strictly bound to the true breakage rate, as shown
in Table II.

VII. RELATED WORK

This paper explored the problem of reducing the time to
discovery of novel test failures in continuous integration. This
is a variation of the well studied problem of Test Case Prior-
itization and Selection [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31] adapted to
the CI environment [32], [33], [34], [35], [36], [37], [38], [31],
[39], [40], [41], [42], [43], [44]. Our approach is predicated on
having highly accurate historical information on what causes
breakages in the Google environment. We achieve this through
culprit finding and verification [11], [12]. Culprit finding [45],
[46], [47], [48], [49], [50], [51], [52], [53] aims to identify
the true “bug introducing commits” (BICs) [54], [55], [56],
[57], [58] by rerunning tests over the search space of possible
versions.

The extensive amount of work on test selection and pri-
oritization makes it difficult to fully summarize outside of a
survey [20], [22], [26], [29], [30]. Here are some highlights.
Early work in test selection focused on selecting tests while
maintaining test suite “adequacy” according to some (usually
coverage based) criterion. For instance Bates and Horwitz [16]

define a coverage criterion based on coverage of elements in
the Program Dependence Graph (PDG) [59], [60] and Rother-
mel and Harrold developed a regression selection technique
based on the PDG [17]. By 2000 papers such as Elbaum et al.
[18]’s were looking at prioritizing test cases based statement
coverage to speed up test suite execution and evaluating
performance based on the now standard average percentage of
faults detected (APFD) metric. By 2003, the community was
starting to look for other sources of data to prioritize and filter
test cases. For instance, Leon and Podgurski [19] compared
the bug finding efficacy (APFD) of coverage techniques versus
techniques that prioritized diversity of basic block execution
profiles (that included execution counts). In 2010 Engstrom et
al. [20] surveyed the state of the test selection and documented
28 techniques.

In 2017 the TAP team at Google began publishing on
the problem [7], [8] and separately a partner team had put
into production an ML based test filtering system for TAP
Presubmit. In contrast to this prior work by TAP, our current
work is better grounded because of the verified culprits dataset
we created in the last several years (see Section II-C2). For
Memon et al. [7] TAP did not yet have a robust culprit finding
system to precisely identify the bug introducing changes.
Instead, that paper attempted to infer what commits might be
the culprit. In Leong et al. [8] TAP did have a culprit finder
but it was not as robust against flakiness and non-determinism
as our current system. Our current culprit finder uses the
Flake Aware algorithm (FACF) that adaptively deflakes the
tests while performing culprit finding. Additionally, we further
verify all culprit commits by doing additional executions in
patterns designed to catch flaky behavior [11], [12]. The
FACF paper [11] performed experiments that show the FACF
algorithm is statistically significantly more accurate than the
“deflaked variant” of the standard “bisect” algorithm used in
the Leong paper. Specifically the experiments indicate FACF is
>10% more accurate at identifying flaky breakages than Bisect
with 8 additional deflaking runs. By properly deflaking our
training and evaluation labels, our model is much less likely
to prioritize flaky tests and our evaluation more accurately
reflects our desired productivity outcomes.

Meanwhile in 2019, Machalica et al. [28] reported on a
similar effort at Facebook in 2019 to develop a test selection
system for their version of Presubmit testing. Conceptually,
the Presubmit selection system at Facebook and the Pre-
submit selection system at Google have similarities. Both
use shallow machine learning models with sets of features
not dissimilar to the features presented in this work. Both
systems (like this work) take a systematic approach to reducing
the effect of flaky failures on developer productivity. The
primary contribution of this paper versus this past work is
the application and evaluation of selection techniques to the
Postsubmit environment. In Postsubmit, the features must be
necessarily adjusted as the prediction of whether or not a test
will change behavior is not against a single commit but against
a sequence of commits. Evaluation also changes: the concern
is not just about recall but also latency of breakage detection

and time-to-fix.
Recently the wider field (outside of Google and Facebook)

has produced compelling work [31], [39], [40], [41], [42], [43],
[44]. We will note a few items here. Jin and Servant [31] pre-
sented HybridCISave which uses a shallow machine learning
based approach to do both fine-grained (individual tests) and
coarse grained (CI workflow builds) selection. By combining
both selection types both cost savings and safety are improved.
The authors evaluate their results using TravisTorrent [61].
This work is a good representative of the general approach
of using shallow machine learning for selection outside of the
mega-corp environment. Wang et al. [43] address the problem
of feature selection by using a transformer based language
model, GitSense, that automates statistic feature extraction.
The authors evaluate their results using the dataset from Chen
et al. [32]. Zeng et al. [44] use mutation testing to better
assess the safety of a commercial CI system (YourBase)
that skips tests based on inferred dependencies. This use of
mutation testing highlights one weakness of traditional safety
evaluation, they only use historical faults and may miss novel
bugs. By injecting mutation faults a more holistic view of
the performance of the model can be obtained. Determining
how to apply mutation testing to shallow machine learning
approaches that use metadata features (such as ours) is an
open problem.

VIII. CONCLUSION

In this paper, we presented a new scheduling system for
Google’s main test automation platform (TAP). The new
scheduling system, Speculative Cycles, prioritizes finding
novel test breakages faster. Speculative Cycles are powered
by a new machine learning model, Transition Prediction, that
predicts when tests are likely to fail. While the results are
not perfect, they indicate that the new system reduces the
breakage detection latency by 65% (70 minutes) on average.
This reduction in breakage detection time leads to a reduction
in developer friction and increased productivity. In terms of
model design, the most impactful choice made was total
amount of prior history used to train the model. As the training
set size went from 1 week to 3 weeks model performance
improved. But as the training set size further increased the
model performance actually began to degrade. Only high level
metadata features were used in this paper. In the future we look
forward to experimenting with more complex models.

REFERENCES

[1] M. Fowler, “Continuous Integration,” 2006. [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html

[2] R. Potvin and J. Levenberg, “Why google stores billions of lines of code
in a single repository,” Communications of the ACM, vol. 59, no. 7, pp.
78–87, 2016.

[3] J. Micco, “Tools for Continuous Integration at Google Scale,” Google
NYC, Jun. 2012. [Online]. Available: https://youtu.be/KH2 sB1A6lA

[4] P. Gupta, M. Ivey, and J. Penix, “Testing at the speed and scale of
Google,” 2011. [Online]. Available: https://google-engtools.blogspot.c
om/2011/06/testing-at-speed-and-scale-of-google.html

[5] M. Bland, “The Chris/Jay Continuous Build,” Jun. 2012. [Online].
Available: https://mike-bland.com/2012/06/21/chris-jay-continuous-bui
ld.html

https://martinfowler.com/articles/ continuousIntegration.html
https://youtu.be/KH2_sB1A6lA
https://google-engtools.blogspot.com/2011/06/testing-at- speed-and-scale-of-google.html
https://google-engtools.blogspot.com/2011/06/testing-at- speed-and-scale-of-google.html
https://mike-bland.com/2012/06/21/chris-jay-continuous- build.html
https://mike-bland.com/2012/06/21/chris-jay-continuous- build.html

[6] J. Micco, “Continuous Integration at Google Scale,” EclipseCon 2013,
Mar. 2013. [Online]. Available: https://web.archive.org/web/20140705
215747/https://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files
/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale
.pdf

[7] A. Memon, Zebao Gao, Bao Nguyen, S. Dhanda, E. Nickell,
R. Siemborski, and J. Micco, “Taming Google-scale continuous
testing,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP).
Piscataway, NJ, USA: IEEE, May 2017, pp. 233–242. [Online].
Available: https://doi.org/10.1109/ICSE-SEIP.2017.16

[8] C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco,
“Assessing Transition-Based Test Selection Algorithms at Google,”
in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
May 2019, pp. 101–110. [Online]. Available: https://ieeexplore.ieee.or
g/document/8804429/

[9] K. Wang, G. Tener, V. Gullapalli, X. Huang, A. Gad, and
D. Rall, “Scalable build service system with smart scheduling
service,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. Virtual Event
USA: ACM, Jul. 2020, pp. 452–462. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3395363.3397371

[10] K. Wang, D. Rall, G. Tener, V. Gullapalli, X. Huang, and
A. Gad, “Smart Build Targets Batching Service at Google,”
in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). Madrid,
ES: IEEE, May 2021, pp. 160–169. [Online]. Available: https:
//ieeexplore.ieee.org/document/9401973/

[11] T. A. D. Henderson, B. Dorward, E. Nickell, C. Johnston, and A. Kon-
dareddy, “Flake Aware Culprit Finding,” in 2023 IEEE Conference on
Software Testing, Verification and Validation (ICST). IEEE, Apr. 2023.

[12] T. A. D. Henderson, A. Kondareddy, S. Azad, and E. Nickell,
“SafeRevert: When Can Breaking Changes be Automatically Reverted?”
in 2024 IEEE Conference on Software Testing, Verification and
Validation (ICST). Toronto, ON, Canada: IEEE, May 2024, pp.
395–406. [Online]. Available: https://ieeexplore.ieee.org/document/106
38594/

[13] M. Hoang and A. Berding, “Presubmit Rescue: Automatically Ignoring
FlakyTest Executions,” in Proceedings of the 1st International Workshop
on Flaky Tests. Lisbon Portugal: ACM, Apr. 2024, pp. 1–2. [Online].
Available: https://dl.acm.org/doi/10.1145/3643656.3643896

[14] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice. Gothenburg Sweden: ACM, May 2018, pp.
181–190. [Online]. Available: https://dl.acm.org/doi/10.1145/3183519.3
183525

[15] M. Guillame-Bert, S. Bruch, R. Stotz, and J. Pfeifer, “Yggdrasil Decision
Forests: A Fast and Extensible Decision Forests Library,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. Long Beach CA USA: ACM, Aug. 2023, pp. 4068–4077.
[Online]. Available: https://dl.acm.org/doi/10.1145/3580305.3599933

[16] S. Bates and S. Horwitz, “Incremental program testing using program
dependence graphs,” in Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages - POPL
’93. Charleston, South Carolina, United States: ACM Press, 1993, pp.
384–396. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1
58511.158694

[17] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 2, pp. 173–210, Apr. 1997. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=248233.248262

[18] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing,” in Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. Issta ’00.
New York, NY, USA: Association for Computing Machinery, 2000, pp.
102–112. [Online]. Available: https://doi.org/10.1145/347324.348910

[19] D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases,”
in 14th International Symposium on Software Reliability Engineering,
2003. ISSRE 2003., vol. 2003-Janua. IEEE, 2003, pp. 442–453.
[Online]. Available: http://ieeexplore.ieee.org/document/1251065/

[20] E. Engström, P. Runeson, and M. Skoglund, “A systematic review
on regression test selection techniques,” Information and Software
Technology, vol. 52, no. 1, pp. 14–30, Jan. 2010. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0950584909001219

[21] Z. Q. Zhou, “Using coverage information to guide test case selection
in Adaptive Random Testing,” Proceedings - International Computer
Software and Applications Conference, pp. 208–213, 2010.

[22] Y. Singh, A. Kaur, B. Suri, and S. Singhal, “Systematic literature review
on regression test prioritization techniques,” Informatica (Slovenia),
vol. 36, no. 4, pp. 379–408, 2012.

[23] M. Gligoric, R. Majumdar, R. Sharma, L. Eloussi, and D. Marinov,
“Regression Test Selection for Distributed Software Histories,” in
Computer Aided Verification, D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar,
G. Weikum, A. Biere, and R. Bloem, Eds. Cham: Springer
International Publishing, 2014, vol. 8559, pp. 293–309. [Online].
Available: http://link.springer.com/10.1007/978-3-319-08867-9 19

[24] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite diversi-
fication and code coverage in multi-objective test case selection,” 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation, ICST 2015 - Proceedings, pp. 1–10, 2015.

[25] S. Musa, A. B. M. Sultan, A. A. B. Abd-Ghani, and S. Baharom,
“Regression Test Cases selection for Object-Oriented Programs based
on Affected Statements,” International Journal of Software Engineering
and Its Applications, vol. 9, no. 10, pp. 91–108, Oct. 2015.

[26] H. de S. Campos Junior, M. A. P. Araújo, J. M. N. David,
R. Braga, F. Campos, and V. Ströele, “Test Case Prioritization: A
Systematic Review and Mapping of the Literature,” in Proceedings
of the 31st Brazilian Symposium on Software Engineering. New
York, NY, USA: ACM, 2017, pp. 34–43. [Online]. Available:
http://doi.acm.org/10.1145/3131151.3131170

[27] A. Najafi, W. Shang, and P. C. Rigby, “Improving Test Effectiveness
Using Test Executions History: An Industrial Experience Report,”
in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
May 2019, pp. 213–222. [Online]. Available: https://ieeexplore.ieee.or
g/document/8804426/

[28] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
Test Selection,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE, May 2019, pp. 91–100. [Online]. Available: https:
//ieeexplore.ieee.org/document/8804462/

[29] M. D. C. De Castro-Cabrera, A. Garcı́a-Dominguez, and I. Medina-Bulo,
“Trends in prioritization of test cases: 2017-2019,” Proceedings of the
ACM Symposium on Applied Computing, pp. 2005–2011, 2020.

[30] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case
selection and prioritization using machine learning: A systematic
literature review,” Empirical Software Engineering, vol. 27, no. 2,
p. 29, Mar. 2022. [Online]. Available: https://link.springer.com/10.100
7/s10664-021-10066-6

[31] X. Jin and F. Servant, “HybridCISave: A Combined Build and Test
Selection Approach in Continuous Integration,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 4, pp. 1–39, Oct.
2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3576038

[32] B. Chen, L. Chen, C. Zhang, and X. Peng, “BUILDFAST: History-aware
build outcome prediction for fast feedback and reduced cost in continu-
ous integration,” in 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2020, pp. 42–53.

[33] I. Saidani, A. Ouni, M. Chouchen, and M. W. Mkaouer, “Predicting
continuous integration build failures using evolutionary search,”
Information and Software Technology, vol. 128, p. 106392, Dec. 2020.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S095058
4920301579

[34] R. Abdalkareem, S. Mujahid, and E. Shihab, “A Machine Learning
Approach to Improve the Detection of CI Skip Commits,” IEEE
Transactions on Software Engineering, vol. 47, no. 12, pp. 2740–2754,
Dec. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/8
961089/

[35] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling, “Which
Commits Can Be CI Skipped?” IEEE Transactions on Software
Engineering, vol. 47, no. 3, pp. 448–463, Mar. 2021. [Online].
Available: https://ieeexplore.ieee.org/document/8633335/

https://web.archive.org/web/20140705215747/https:// www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013- 03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://web.archive.org/web/20140705215747/https:// www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013- 03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://web.archive.org/web/20140705215747/https:// www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013- 03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://web.archive.org/web/20140705215747/https:// www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013- 03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://ieeexplore.ieee.org/document/8804429/
https://ieeexplore.ieee.org/document/8804429/
https://dl.acm.org/doi/10.1145/3395363.3397371
https://dl.acm.org/doi/10.1145/3395363.3397371
https://ieeexplore.ieee.org/document/9401973/
https://ieeexplore.ieee.org/document/9401973/
https://ieeexplore.ieee.org/document/10638594/
https://ieeexplore.ieee.org/document/10638594/
https://dl.acm.org/doi/10.1145/3643656.3643896
https://dl.acm.org/doi/10.1145/3183519.3183525
https://dl.acm.org/doi/10.1145/3183519.3183525
https://dl.acm.org/doi/10.1145/3580305.3599933
http://portal.acm.org/citation.cfm?doid=158511.158694
http://portal.acm.org/citation.cfm?doid=158511.158694
http://portal.acm.org/citation.cfm?doid=248233.248262
https://doi.org/10.1145/347324.348910
http://ieeexplore.ieee.org/document/1251065/
http://linkinghub.elsevier.com/retrieve/pii/ S0950584909001219
http://link.springer.com/10.1007/978-3-319-08867-9_19
http://doi.acm.org/10.1145/3131151.3131170
https://ieeexplore.ieee.org/document/8804426/
https://ieeexplore.ieee.org/document/8804426/
https://ieeexplore.ieee.org/document/8804462/
https://ieeexplore.ieee.org/document/8804462/
https://link.springer.com/10.1007/s10664-021-10066-6
https://link.springer.com/10.1007/s10664-021-10066-6
https://dl.acm.org/doi/10.1145/3576038
https://linkinghub.elsevier.com/retrieve/pii/ S0950584920301579
https://linkinghub.elsevier.com/retrieve/pii/ S0950584920301579
https://ieeexplore.ieee.org/document/8961089/
https://ieeexplore.ieee.org/document/8961089/
https://ieeexplore.ieee.org/document/8633335/

[36] K. Al-Sabbagh, M. Staron, and R. Hebig, “Predicting build outcomes
in continuous integration using textual analysis of source code
commits,” in Proceedings of the 18th International Conference on
Predictive Models and Data Analytics in Software Engineering.
Singapore Singapore: ACM, Nov. 2022, pp. 42–51. [Online]. Available:
https://dl.acm.org/doi/10.1145/3558489.3559070

[37] I. Saidani, A. Ouni, and M. W. Mkaouer, “Improving the prediction of
continuous integration build failures using deep learning,” Automated
Software Engineering, vol. 29, no. 1, p. 21, May 2022. [Online].
Available: https://link.springer.com/10.1007/s10515-021-00319-5

[38] ——, “Detecting Continuous Integration Skip Commits Using Multi-
Objective Evolutionary Search,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4873–4891, Dec. 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9622158/

[39] X. Jin, Y. Feng, C. Wang, Y. Liu, Y. Hu, Y. Gao, K. Xia, and
L. Guo, “PIPELINEASCODE: A CI/CD Workflow Management System
through Configuration Files at ByteDance,” in 2024 IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER). Rovaniemi, Finland: IEEE, Mar. 2024, pp. 1011–1022.
[Online]. Available: https://ieeexplore.ieee.org/document/10589850/

[40] B. Liu, H. Zhang, W. Ma, G. Li, S. Li, and H. Shen, “The Why,
When, What, and How About Predictive Continuous Integration:
A Simulation-Based Investigation,” IEEE Transactions on Software
Engineering, vol. 49, no. 12, pp. 5223–5249, Dec. 2023. [Online].
Available: https://ieeexplore.ieee.org/document/10315109/

[41] Y. Hong, C. Tantithamthavorn, J. Pasuksmit, P. Thongtanunam,
A. Friedman, X. Zhao, and A. Krasikov, “Practitioners’ Challenges
and Perceptions of CI Build Failure Predictions at Atlassian,” in
Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering. Porto de Galinhas
Brazil: ACM, Jul. 2024, pp. 370–381. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3663529.3663856

[42] G. Sun, S. Habchi, and S. McIntosh, “RavenBuild: Context, Relevance,
and Dependency Aware Build Outcome Prediction,” Proceedings of the
ACM on Software Engineering, vol. 1, no. FSE, pp. 996–1018, Jul.
2024. [Online]. Available: https://dl.acm.org/doi/10.1145/3643771

[43] G. Wang, Z. Sun, Y. Chen, Y. Zhao, Q. Liang, and D. Hao, “Commit
Artifact Preserving Build Prediction,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis.
Vienna Austria: ACM, Sep. 2024, pp. 1236–1248. [Online]. Available:
https://dl.acm.org/doi/10.1145/3650212.3680356

[44] Z. Zeng, T. Xiao, M. Lamothe, H. Hata, and S. Mcintosh, “A Mutation-
Guided Assessment of Acceleration Approaches for Continuous
Integration: An Empirical Study of YourBase,” in Proceedings of
the 21st International Conference on Mining Software Repositories.
Lisbon Portugal: ACM, Apr. 2024, pp. 556–568. [Online]. Available:
https://dl.acm.org/doi/10.1145/3643991.3644914

[45] C. Couder, “Fighting regressions with git bisect,” The Linux
Kernel Archives, vol. 4, no. 5, 2008. [Online]. Available: https:
//www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html

[46] C. Ziftci and V. Ramavajjala, “Finding Culprits Automatically in
Failing Builds - i.e. Who Broke the Build?” Apr. 2013. [Online].
Available: https://www.youtube.com/watch?v=SZLuBYlq3OM

[47] C. Ziftci and J. Reardon, “Who broke the build? Automatically identify-
ing changes that induce test failures in continuous integration at google
scale,” Proceedings - 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP 2017, pp. 113–122, 2017.

[48] R. Saha and M. Gligoric, “Selective Bisection Debugging,” in
Fundamental Approaches to Software Engineering, M. Huisman and
J. Rubin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017,
vol. 10202, pp. 60–77. [Online]. Available: https://link.springer.com/10
.1007/978-3-662-54494-5 4

[49] A. Najafi, P. C. Rigby, and W. Shang, “Bisecting commits and
modeling commit risk during testing,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. New
York, NY, USA: ACM, Aug. 2019, pp. 279–289. [Online]. Available:
https://dl.acm.org/doi/10.1145/3338906.3338944

[50] M. J. Beheshtian, A. H. Bavand, and P. C. Rigby, “Software
Batch Testing to Save Build Test Resources and to Reduce
Feedback Time,” IEEE Transactions on Software Engineering,
vol. 48, no. 8, pp. 2784–2801, Aug. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9392370/

[51] J. Keenan, “James E. Keenan - ”Multisection: When Bisection Isn’t
Enough to Debug a Problem”,” Jun. 2019. [Online]. Available:
https://www.youtube.com/watch?v=05CwdTRt6AM

[52] G. An and S. Yoo, “Reducing the search space of bug inducing
commits using failure coverage,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Athens
Greece: ACM, Aug. 2021, pp. 1459–1462. [Online]. Available:
https://dl.acm.org/doi/10.1145/3468264.3473129

[53] F. S. Ocariza, “On the Effectiveness of Bisection in Performance
Regression Localization,” Empirical Software Engineering, vol. 27,
no. 4, p. 95, Jul. 2022. [Online]. Available: https://link.springer.com/10
.1007/s10664-022-10152-3

[54] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
p. 1, Jul. 2005. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1082983.1083147

[55] G. Rodrı́guez-Pérez, G. Robles, and J. M. González-Barahona,
“Reproducibility and credibility in empirical software engineering:
A case study based on a systematic literature review of the
use of the SZZ algorithm,” Information and Software Technology,
vol. 99, pp. 164–176, Jul. 2018. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0950584917304275

[56] M. Borg, O. Svensson, K. Berg, and D. Hansson, “SZZ unleashed:
An open implementation of the SZZ algorithm - featuring example
usage in a study of just-in-time bug prediction for the Jenkins project,”
in Proceedings of the 3rd ACM SIGSOFT International Workshop
on Machine Learning Techniques for Software Quality Evaluation -
MaLTeSQuE 2019. Tallinn, Estonia: ACM Press, 2019, pp. 7–12.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=3340482.33427
42

[57] M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and
Z. Su, “Exploring and exploiting the correlations between bug-inducing
and bug-fixing commits,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Tallinn
Estonia: ACM, Aug. 2019, pp. 326–337. [Online]. Available:
https://dl.acm.org/doi/10.1145/3338906.3338962

[58] G. An, J. Hong, N. Kim, and S. Yoo, “Fonte: Finding Bug
Inducing Commits from Failures,” Feb. 2023. [Online]. Available:
http://arxiv.org/abs/2212.06376

[59] S. Horwitz, J. Prins, and T. Reps, “On the adequacy of program
dependence graphs for representing programs,” ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pp.
146–157, 1988. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=73560.73573

[60] A. Podgurski and L. Clarke, “The Implications of Program Dependencies
for Software Testing, Debugging, and Maintenance,” in Proceedings
of the ACM SIGSOFT ’89 Third Symposium on Software Testing,
Analysis, and Verification. New York, NY, USA: ACM, 1989, pp.
168–178. [Online]. Available: http://doi.acm.org/10.1145/75308.75328

[61] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent,” p. 414195226
Bytes, 2022. [Online]. Available: https://figshare.com/articles/dataset/T
ravisTorrent/19314170/1

https://dl.acm.org/doi/10.1145/3558489.3559070
https://link.springer.com/10.1007/s10515-021-00319-5
https://ieeexplore.ieee.org/document/9622158/
https://ieeexplore.ieee.org/document/10589850/
https://ieeexplore.ieee.org/document/10315109/
https://dl.acm.org/doi/10.1145/3663529.3663856
https://dl.acm.org/doi/10.1145/3663529.3663856
https://dl.acm.org/doi/10.1145/3643771
https://dl.acm.org/doi/10.1145/3650212.3680356
https://dl.acm.org/doi/10.1145/3643991.3644914
https://www. kernel. org/pub/software/scm/git/doc s/git- bisect-lk2009.html
https://www. kernel. org/pub/software/scm/git/doc s/git- bisect-lk2009.html
https://www.youtube.com/watch?v=SZLuBYlq3OM
https://link.springer.com/10.1007/978-3-662-54494-5_4
https://link.springer.com/10.1007/978-3-662-54494-5_4
https://dl.acm.org/doi/10.1145/3338906.3338944
https://ieeexplore.ieee.org/document/9392370/
https://www.youtube.com/watch?v=05CwdTRt6AM
https://dl.acm.org/doi/10.1145/3468264.3473129
https://link.springer.com/10.1007/s10664-022-10152-3
https://link.springer.com/10.1007/s10664-022-10152-3
http://portal.acm.org/citation.cfm?doid=1082983.1083147
http://portal.acm.org/citation.cfm?doid=1082983.1083147
https://linkinghub.elsevier.com/retrieve/pii/ S0950584917304275
https://linkinghub.elsevier.com/retrieve/pii/ S0950584917304275
http://dl.acm.org/citation.cfm?doid=3340482.3342742
http://dl.acm.org/citation.cfm?doid=3340482.3342742
https://dl.acm.org/doi/10.1145/3338906.3338962
http://arxiv.org/abs/2212.06376
http://portal.acm.org/citation.cfm?doid=73560.73573
http://portal.acm.org/citation.cfm?doid=73560.73573
http://doi.acm.org/10.1145/75308.75328
https://figshare.com/articles/dataset/TravisTorrent/ 19314170/1
https://figshare.com/articles/dataset/TravisTorrent/ 19314170/1

	Introduction
	The Google Development Environment
	TAP Postsubmit
	Cost of Breakages
	Our Contributions and Findings

	Background
	Developer Services
	Bazel
	Forge

	Comprehensive Testing Cycles
	Ancillary Systems For Build Gardening
	Culprit Finding
	Culprit Verifier
	Autorollback

	The Evolution of TAP
	The Current Dilemma

	Speculative Testing Cycles
	Determining Breakage Likelihood
	Making Scheduling Decisions
	Goal of Finding Test Breakages
	Evaluating Performance

	Transition Prediction
	Features
	Labeling
	Super Extreme Class Imbalance
	Training Configuration

	Empirical Evaluation
	Evaluation
	Research Questions
	Measuring Performance (Recall)
	Measuring Productivity Outcomes (Latency Improvement)
	High Priority Configuration of Training Scheme
	Training Split / Window Size
	Downsampling and Upweighting

	Dataset

	Results
	Summary of Results
	Feature Selection
	Training Environment
	Correcting for Super-Extreme Class Imbalance

	Related Work
	Conclusion
	References

