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Abstract—When bugs or defects are introduced into a large
scale software repository, they reduce productivity. Programmers
working on related areas of the code will encounter test failures,
compile breakages, or other anomalous behavior. On encounter-
ing these issues, they will need to troubleshoot and determine that
their changes were not the cause of the error and that another
change is at fault. They must then find that change and revert
it to return the repository to a healthy state. In the past, our
group has identified ways to identify the root cause (or culprit)
change that introduced a test failure even when the test is flaky.
This paper focuses on a related issue: at what point does the
Continuous Integration system have enough evidence to support
automatically reverting a change? We will motivate the problem,
provide several methods to address it, and empirically evaluate
our solution on a large set (25,137) of real-world breaking changes
that occurred at Google. SafeRevert improved recall (number
of changes recommend for reversion) by 2x over the baseline
method while meeting our safety criterion.

I. INTRODUCTION

Large scale software development is enabled by automati-
cally executing tests in a continuous integration environment.
Continuous integration (CI) [1] is the industrial practice of
using automated systems to automatically integrate changes
into the source of truth for the software system or repository.
This improves collaboration by helping software developers
avoid breaking compilation, tests, or structure of the system
that others are relying on.

Corporations and teams may engage in CI using adhoc
tools across many independent software repositories. For in-
stance Github (github.com) supports CI “Actions” which can
be integrated into any repository. However, many organiza-
tions are recognizing the value of using a “mono-repository”
(monorepo) development model where many or all teams in
the organization use a single shared software repository [2]. At
the largest organizations such as Google [2], [3], [4], Microsoft
[5], and Facebook [6] large repositories are complimented by
advanced centralized CI systems.

In these large, modern CI systems, the integration goes
beyond just ensuring the code textually merges. Compilations
are invoked, tests are executed, and additional static and
dynamic verification steps are performed. The demand for
machine resources can exceed capacity for build, test, and
verification tasks desired by a large-scale CI system. To
combat this problem, test case selection or prioritization is
used [7], [8], [6] to select fewer tests to run.

Additionally, CI steps are often invoked at multiple points in
the Software Development Life Cycle. In the past, it may have
been assumed that the tests were executed by the CI system
once, at the time a commit was created in the version control.
Today, CI may execute tests multiple times during develop-
ment: when a change is sent for code review, immediately
prior to submission or integration into the main development
branch, after one or more changes has been integrated into the
development branch, and when a new release is created. This
paper is primary concerned with testing that occurs after the
code has been integrated into the main development branch.

A. Why is Testing Necessary After Code Integration?

When deploying CI for the first time, many organizations
primarily focus on conducting testing at the time a change
is merged into the main branch. For instance, they may test
when a Pull Request (PR) on Github is going to be merged
into the main branch. The PR is merged if the tests pass and
no changes have been made to the main branch since the
testing started. This strategy works well until the rate of PR
submission exceeds the average amount of time it takes to run
all the tests.

At this point, organizations may do a stop gap fix such as
adding more machines to run tests in parallel or reducing the
size of the test suite. However, at some point, these measures
will prove ineffective and the rate that testing can be conducted
will become a impediment to an organization’s engineering
velocity. To address this, one common solution is to introduce
a “submission queue” which batches changes together for
testing and merges them all if the tests pass [9]. If the tests
fail, the offending change must be identified and the remaining
changes in the batch must be retested (at least doubling the
total testing time) [10].

As the submission rate continues to increase, the organi-
zation may add conservative test selection based on file-level
dependence analysis [9]. But at this point, the organization
will be reaching the limit of what can be done to completely
prevent any breaking changes from being integrated into the
main development branch beyond just buying more and more
machines to further parallelize the testing.

And what about just buying more machines? Won’t this
effectively solve the problem? It would until the submission
rate exceeds the time it takes to run the slowest test. At this
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Fig. 1: Example for showing when tests are run by a continuous
integration system after the code has been integrated into the main
development branch. Tests are only run periodically when there is
capacity at changes (versions) marked with red dashes. These are
called “Testing Cycles” in this paper. Change 13 introduced a bug
that broke tests 7p and 7. Change 13 is marked with a red “c”
indicating “culprit.” Not all tests are run during every testing cycle
due to dynamic or static test selection [7]. Note, this is an improved
version of Figure 1 from [4].

point, the number of machines purchased can only partially
control impact to developer productivity. Even with a very
large budget for testing, the number of changes per batch will
continue to grow as increases in the number of machines will
not reduce the batch size but only keep the testing time per
batch relatively constant. The larger the batch size, the more
likely that a developer will experience conflicts with another
change when attempting to submit. These conflicts (either at
the syntactical or semantic level) will make it difficult for
developers to reliably submit their changes and require them
to constantly monitor the submission process. This monitoring
will hurt overall developer productivity.

At the highest submission rates seen in industry today,
using submission queues that guarantee zero breaking changes
becomes infeasible both from a machine cost perspective and
from a developer productivity perspective. Therefore, many
organizations relax the requirement that an integrated change
will never break a test. Even while using submit queues to
gate contributions for a single team, Google has relied on
postsubmit testing for mission-critical software since the early
2000s as documented by Mike Bland [11].

B. Post Submission Testing

The purpose of testing after a change has been integrated
(called Post-Submission Testing or Postsubmit Testing here-
after) is to identify defects that slipped through testing that
occurred prior to integration. Typically, organizations are un-
able to run all tests at every integrated change. Instead, testing
is conducted periodically. In this paper we will refer to this
periodic testing as Testing Cycles.

Figure 1 is a simplified view of the postsubmit testing
strategy used at Google. The test scheduler waits until our
Build System [12] has capacity to start a test cycle. It then
schedules tests and then waits until the system has capacity
again. When scheduling tests, certain tests may be temporarily
skipped or throttled to conserve resources. As shown in Figure

1, this leads to the system usually detecting new failures some
time after the version that introduced them had been integrated.
This leads to the problem of “Culprit Finding.”

C. Culprit Finding

Culprit finding is conceptually simple: given a list of ver-
sions that may have introduced a fault, locate the offending
change. One may solve this problem with a variety of tech-
niques: Zeller’s Delta Debugging [13], Git’s bisection algo-
rithm [14], or Google’s Flake Aware Culprit Finding (FACF)
algorithm [4]. Every technique used to identify the offending
change will have some error rate in industrial practice.

But wait! How can a binary search or delta debugging have
an “error rate”? The answer is that old nemesis of industrial
practice: flaky or non-deterministic test behavior [15]. Flaky
tests can be caused both by problems in the production code
(ex: race conditions causing rare errors), in the test code (ex:
use of “sleep”) and by infrastructure problems (ex: unreliable
machine with bad ram or network congestion). All of these
problems behave in version non-hermetic ways, where failures
may not be strictly linked to the version of code executed.
Furthermore, even when the test is fully version hermetic the
flakiness may not obey a Bernoulli distribution as subsequent
executions may not be fully independent of the prior ones.

The above issues mean that even culprit finding algorithms
such as FACF [4] that have been purpose-built to mitigate
flakiness will have some error rate. While that error rate will be
much less than a naive algorithm, it may still be high enough
to cause problems when deployed in certain environments.

D. Automatically Reverting Changes

Once an organization has a reliable and high performance
culprit finding system, it is natural to use it to automatically
revert (undo, roll back) changes that introduce defects into
the main development branch. By automatically undoing these
changes, the system decreases the amount of time developers
working with impacted tests will experience breakages that
are unrelated to the changes they are working on. It will also
increase the number of versions that are viable to be used to
make software releases. Reducing development friction and in-
creasing the number of release candidates improves developer
productivity by reducing the amount of time developers spend
troubleshooting tests that were broken by someone else.

Unfortunately, naively integrating FACF directly into a
system that immediately reverts all changes it identifies will
lead to unhappy developers. This is because even though
Google’s FACF has a measured per-test accuracy of 99.54%,
when aggregated (grouped) by blamed change, the accuracy
per-change is only 77.37% in the last 28 day window as of this
writing.! This would translate into incorrectly reverting ap-
proximately 20-130 changes per day out of an approximately

IBoth the per-test error rate and the per-change error rates quoted above are
drawn from the same 28 day window. The Postsubmit result which triggers
culprit finding may itself have been a flake, so there were spurious suspect
ranges in the same period. These rates may differ slightly from the numbers
reported in [4] as they reflect our most recent data as of 2023-11-12.



of 300-500 total changes per day reverted (see Figure 2). At
Google, we find the cost of incorrectly reverting a change
is extremely high in terms of developer toil and frustration.
Therefore, we need to reduce the rate of bad reversions as
much as possible. In this work, we aim to incorrectly revert
fewer than one change per day on average.

E. Our Contributions and Findings

In this paper we propose a shallow machine-learning based
method for using the output of a culprit finding algorithm to
automatically revert (undo, rollback) a change that controls for
potential errors from the culprit finding algorithm. Our method
is generic and can be used with any culprit finding algorithm.

1) SafeRevert: a method for using the output of any culprit
finding algorithm to automatically revert (undo) a change.
SafeRevert controls for the error rate while increasing
total number of reversions over baseline methods.

2) An ablation study on the models, designs and features
used by the machine learning system used in SafeRevert
to identify the most impactful features and best models.

3) A large scale study on SafeRevert’s efficacy using
~25,137 potential culprit changes identified by Google’s
production culprit finder over a ~3 month window yields
a recall of 55.7%, ~ 2.1x higher than the baseline
method.

II. BACKGROUND

The Test Automation Platform (TAP) is a proprietary Con-
tinuous Integration (CI) system at Google. It runs tests that
execute on a single machine without the use of the network
or external resources.” All tests on TAP are required to run in
under 15 minutes and exceeding that limit is considered a test
failure. TAP executes tests both before a user submits their
changes and after the user has submitted their change. This
paper is only concerned with the testing that has occurred after
a user has submitted a change. At Google, this is referred to as
“Postsubmit Testing”. The part of TAP that does Postsubmit
Testing is called TAP Postsubmit.

TAP has appeared in the literature several times [7], [16],
[81, [3], [17], [12], [4] and there has been gradual evolution its
testing strategy over the years. However, in general TAP uses
a combination of static and dynamic Test Selection, execution
throttling, and just-in-time scheduling to control testing load.
A simplified diagram of TAP Postsubmit testing is visualized
in Figure 1. Tests are periodically run in Testing Cycles.?
During a cycle, Projects that are eligible to run their test in
the cycle are selected. Tests from those projects are included
if some file was modified since that test’s last execution can
influence their behavior via inspection of a dependence graph
at the Build Target and File level granularity [7], [16]. When

2There are some legacy tests which are allowed to use the network but
there is an on-going effort to clean up their usage.

3Previously, we referred to these cycles as “Milestones” in most of the
previous literature but we are gradually changing our internal nomenclature
as we evolve TAP Postsubmit’s testing model.

breakages inevitably occur culprit finding is conducted using
the FACF algorithm to locate the offending change [4].

FACEF operates on a single test target at a time. For simplic-
ity, we use the term “test” both for a target which executes
test code or for a “build targets” which verifies that a binary
can compile. Conceptually, FACF performs a “Noisy Binary
Search” [18] (also called a Rényi-Ulam game [19]) which
FACF models under the Bayesian Search Framework [20]. The
input to FACF includes the suspect changes (“suspects”) that
may have broken the test and an estimate collected by an inde-
pendent system of how likely it is to fail non-deterministically
without the presence of a deterministic bug, it’s “flakiness”.
Much like a normal binary search, it then divides the search
space, executes tests, and updates a probability distribution
based on the outcomes. Eventually, the system will determine
that one of the suspects is above a set probability threshold
(.9999) and is the source of the test failure, or that none of
the suspects is at fault and the original failure was spurious,
due to a flake (non-deterministic failure).

A. Culprit Finding Accuracy

Now some caveats: The math behind FACF [4] assumes
that individual test executions of the same test at either the
same version or different versions are independent statistical
events. That is, a prior or concurrent execution of a test cannot
influence a subsequent execution. Unfortunately, while this as-
sumption is theoretically sound, in practice this property does
not always hold. External factors outside a program’s code
can also influence a test’s execution behavior. For example,
the time of day, day of year, load on the machine, etc., can all
influence the outcome of certain tests. Thus, while we have
configured FACF to have an accuracy of 99.99%, in practice
we do not observe this level of accuracy. As noted in the
Introduction, our observed accuracy was 99.54% in the last
28 day window as of this writing. This level of accuracy
is consistent with the empirical study conducted in the 2023
paper [4].

How was accuracy “observed”? What was the ground truth
used? By what measurement technique? At Google, we contin-
uously randomly sample a subset of culprit finding execution
results as they are completed. The selected sample is then
cross checked by performing extensive reruns that demand a
higher level of accuracy and assume a worse flakiness rate
for the test than used for culprit finding. Additionally, more
reruns are scheduled for a later time to control for time-based
effects. Finally, execution ordering effects are controlled for
by ensuring that executions at versions that should fail can fail
both before and after versions that should pass are executed.
Full details on our methods for verification can be found in
the FACF paper [4]. Even with extensive reruns there remains
a small probability of error. While our method of verification
is imperfect, it allows for continuously computing a statistical
estimate on the accuracy of the culprit finder.

Measurements of FACF accuracy reported in the 2023 paper
were performed per test breakage. That is, culprit finding is
performed on a test ¢ when it has an observed failure at some



version 3 when it was previously passing at a prior version
a. The range (a, f] is referred to as the search-range and the
key {t x («, ]} is the search-key. For a given search-key,
the culprit finder first filters the search-range to changes on
which ¢ has a transitive build dependence, which we call the
suspect-set. A culprit x is identified somewhere between [
and o (e.g. « C xk C 8 where a C b indicates version a is
before version b). It is possible that there are multiple «, for
different ¢ w.r.t. the same search range, which we can call the
culprit-set of the search range. What is measured is whether
or not « is correct (true or false) for a given ¢ and search range
« C (. Accuracy is the total correct measurements over the
total number of measurements taken.

B. Applying Culprit Finding Results to Change Reversion

When breaking changes get merged into the main develop-
ment branch they impede development productivity. At Google
we term impediments to productivity as “friction.” Breaking
changes impact three types of friction tracked at Google: Re-
lease Friction, Presubmit Friction and Development Friction.
Release Friction occurs when breaking changes that merge
into the main development branch impede automated releases
and require manual intervention by the primary team’s on-
duty engineer. Presubmit Friction occurs when pre-submission
(“presubmit”) testing in TAP fails due to a broken test in the
main development branch. Development Friction occurs when
a developer manually triggers the execution of a test broken
on the main branch during active code development. All three
types of friction can steal time from developers and reduce
productivity.

To reduce friction, changes that break tests can be automat-
ically reverted (“rolled back”). However, auto-revert (“auto-
rollback™) only improves developer productivity if the changes
reverted actually broke tests. Let’s consider for a moment what
happens when a change is incorrectly reverted. The developer
who authored the change now needs to go on a wholly different
troubleshooting journey to determine why their change didn’t
stay submitted, and they are faced with the same damning-but-
incorrect evidence used to revert their change. The developer
is frustrated and must now debug tests that their team doesn’t
own and which their changes should not affect.

Some changes are particularly difficult to submit with a
buggy auto-revert system: those that change core libraries.
These changes have the potential to break a large number of
tests and impact a large number of other developers. But, at the
same time they are also more likely to be incorrectly blamed
(as TAP tracks what tests are affected by each change and uses
this as an input to culprit finding). Past auto-revert systems that
have been too inaccurate have caused core library authors to
opt their changes out of auto reversion as the productivity cost
to the core library teams has been too great to bear.

C. Accuracy of Auto-Revert versus Culprit Finding

A change « that breaks a test may have broken more than
one. If so, then multiple independent executions of the culprit
finding algorithm (one for each broken test) will blame the

version k as the culprit. As explored above, the algorithms
have an error rate. A change x that breaks n tests will have
m < n culprit finding conclusions that correctly identify « as
the culprit.

Our concern with auto-revert isn’t the accuracy of culprit
finding per search-key {¢x («, 5]} but rather per culprit change
k. Let K be the set of all changes in the repository blamed
as culprits by the culprit finding system. Let ¢ C K be the
subset of the culprits that are correct and ¢ C K be the
subset of culprits that are incorrect. Then if every culprit in
K was automatically reverted, the accuracy of the auto-revert
system would be |c|/|K]. In the introduction, we noted that
the accuracy per change was 77.37% which equals |c|/|K].

Why is the auto-revert accuracy (77.37%) lower than the
culprit finding accuracy (99.54%)? Because there are many
more tests than culprits and because correctly identified culprit
changes may have broken more than one test. The chance of
finding that culprit is higher because there are more chances
to find it. Additionally, all of the culprit finding conclusions
that identify one of those changes that break many tests will
be correct. The set of incorrectly identified culprit ¢ tends to
contain mostly changes that are blamed by a fewer number of
tests than those in set c.

D. Problem Statement

Identify a method for selecting as many as possible changes
from the set of culprits K that can be safely reverted. A
change is safe to revert if it is a true culprit. Safety can be
defined in terms of probability as well: A change is safe to
revert if the chance it is a true culprit is > 99%. The number
of changes selected should be maximized (while maintaining
safety) to ensure the methods performs reversions rather than
safely doing nothing at all.

III. AUTOMATICALLY REVERTING CHANGES

We will describe several methods for selecting changes to
revert while maintaining the intended safety property. The
first method is a simple “baseline” method that the more
complex methods will be evaluated against. The other methods
use shallow machine learning systems to take advantage of
metadata available at revert time.

Our baseline method is based on a single observation: a
change ko that is identified as the culprit by culprit find-
ing on many tests is more likely to be a culprit than a
change k; that is only blamed by a few tests. Therefore,
the simplest heuristic approach to selecting changes to revert
is to threshold on a minimum number of tests identifying
the change. BASELINE(N) will refer to this method with
selecting changes with at least N blaming targets. Figure 2
shows the performance of this method at various minimum
number of targets. The most conservative, BASELINE(50) can
avoid most false positives while reverting only a ~13% of true
culprits. We choose BASELINE(10) for our final evaluation as
this is the heuristic Google has historically used. Additionally,
10 is the lowest configuration of BASELINE that generally
(although not always) meets the desired safety criteria.
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Fig. 2: BASELINE method performance. As the minimum required number of tests increases from 1 to 50 or more the bad revert rate
decreases and the recall decreases. Decreasing the bad revert rate is good (this means the accuracy is improving) but decreasing the recall is
bad (this means fewer changes are being reverted). Thus the BASELINE method has to be configured to be “just conservative enough” to be
safe while still reverting a reasonable number of changes. At Google we currently utilize the BASELINE(10) configuration in production.
Note the change in Y-Axis between the left and right columns in order to show details of the more conservative configurations.

A. Predicting Auto-Revert Correctness using Machine Learn-
ing

Instead of choosing just one suggestive feature — the number
of blaming tests — to decide on a reversion, our proposed
method uses multiple features and shallow machine learn-
ing models to improve performance relative to the baseline
method. A selection of easily obtainable coarse-grained meta-
data on the changes, tests, and culprit finding process are
used as features to the models. As these features are mainly
simple numerical, categorical, and textual features about the
code, we use simple model architectures to control for over-
fitting. Architectures examined are: Random Forests (RF) and
AdaBoost (ADA) (both provided by scikit-learn* [21]), and
XGBoost (XGB)® [22]. These tree-based model architectures
are easy to use, have low computational costs, and are robust
to the feature representation versus alternatives that require
more preprocessing.

B. Features Used

A suspect change is one that has been identified by at
least one culprit-finder in the process of culprit finding a
test. We can consider this the test blaming the change. For

“https:/scikit-learn.org/
Shttps://xgboost.readthedocs.io/en/stable/index.html

any suspect, we have one or more blaming tests. Then, we
have a few sources of information that may be valuable for
predicting a true breakage: characteristics of the change itself
and characteristics of the blaming tests or culprit finding
results. Table I contains the grouping of the features against
their logical feature category, arrived at using the Pearson
correlation between numerical features and lift analysis for
non-numeric features.

C. Feature Representation

1) Categorical Features: Given a set of categories, we can
create a fixed length representation by encoding a choice of
category as a one-hot vector. When we have a variable number
of categories per instance, such as language per test, this
trivially becomes a multi-hot representation by summing the
vectors.

2) Numerical Features: Singular numerical fields are inte-
grated without preprocessing or normalization, as we expect
decision trees to be robust to value-scaling. Variable-length
numerical fields are turned into variable-length categorical
fields by generating bins representing quantiles of the training
set distribution of that value. Then, bin-mapped values can be
condensed into a fixed-length multi-hot encoding as above.

3) Token Set Features: Token Sets correspond to variable-
length categorical features where the list of categories is
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not known in advance. A good example of such a feature
is compiler flags which should be dealt with adaptively by
the model. We handle this issue by building a vocabulary
per token-set feature on the training set parameterized by
a minimum and maximum across-instance frequency. The
change description, while potentially better dealt with through
doc2vec or a more sophisticated NLP embedding approach, is
treated like a token set and the resulting multi-hot encoding,
having each field normalized by document frequency (TF-
IDF).

D. Feature Grouping

1) Logical Sub-Grouping for Feature Lift Analysis: In order
to avoid crowding out the evaluation and analysis with too
many combinations of features, we’ve grouped them in Table
I into logical groups of features based off of conceptual cat-
egories and to reflect cross-feature correlations for numerical
features, computed via pearsons correlation coefficient. As our
“Token Set” features represent a distinct class of features both
in terms of encoding method and granularity (highly specific
to individual changes), we separate them from the coarse-grain
change features. These logical groups will allow us to clearly
convey the individual signal being provided by each class of
feature during our feature analysis.

2) Availability Sub-Grouping for Model Comparison Analy-
sis: Separately, we define the feature sets F = {BASE, AHEAD-
OF-TIME, REAL-TIME, ALL} to distinguish between features
available at any potential inference time

1) BASE is just the number of blaming tests. This corre-
sponds to the BASELINE heuristic method.

2) AHEAD-OF-TIME features are properties of the
change under suspicion, and are therefore available
immediately. Features under CHANGE_CONTENT,
CHANGE_METADATA, and CHANGE_TOKENS from
Table I belong here.

TABLE I: FEATURES FOR MACHINE LEARNING MODEL.

Category Features

BASE

# of Blaming Tests

LOC (changed, added, deleted, total)
# of Files Changed

File Extensions

CHANGE_CONTENT

Reviewer/Approver Count
CHANGE_METADATA | [ssue/Bug Count

Robot Author
Directory Tokens

CHANGE_TOKENS

Description

|Suspect-Set| of Search-Key

CULPRIT_FINDER
|Culprit-Set| of Search-Range

Historical Flaky Identification Count (Build/Test)
Historical Execution Flake Rate

Type of Test (Test vs Build)

Bazel Rule (Ex: “java_test”)

Machine Types (Ex: gpu)

Test Language (Ex: java, c++, etc)

FLAKINESS

TEST_ATTRIBUTES

Compiler Flags (ex: sanitizers)
Average Machine Cost

3) REAL-TIME features are available only as a result of
culprit finding processes at play continuously during the
decision window, and can become available at different
times based on different sources of generation, often after
a change has already been suspected by a culprit finder
— all other features from Table I fall in this set.

4) ALL features is the union of AHEAD-OF-TIME and
REAL-TIME.

This distinction is important: the usefulness of automatically
reverting changes is critically dependent on its latency from
the point of discovering that a breakage exists. The longer
we take to automatically revert the change, the more friction
experienced by developers, and the more likely a developer
would have had to manually intervene.

3) Feature Minimization: Given the demonstrated feature
lift, we’re also interested in minimizing the features needed
to achieve similar performance levels without over-fitting on
redundant features. We’ll elaborate on the exact minimized
feature sets in the evaluation section for feature analysis,
where we use representative features from each logical sub-
groups that provide significant lift individually. Thus we have
3 further feature sets, MIN(f) for f € F. Representative
features are determined over the test set based on individual
feature comparison, left out for brevity in the analysis, rather
than the logical category evaluation presented here. We eval-
uate RF(f), ADA(f), XGB(f), RF(MIN(f)), ADAMIN(Y)), and
XGB(MIN(f)) for each feature set f € F.

E. Thresholding to use Model Prediction Score for Selection

Models produce an output probability score from 0 to
1. To discretize these scores into actual change selections.
We dynamically pick a threshold using the TEST dataset to
select the threshold that minimizes the bad revert rate while
maximizing a positive, non-zero recall.

F. Hyperparams for ML Models

Using scikit-learn, we define RF as the RandomForest-
Classifier parameterized with a depth of 16 and ADA as
the AdaBoostClassifier with default parameters, each of
which provide discretized predictions with the above thresh-
old selection procedure. XGBoost is configured with: objec-
tive="binary:logistic’, eta=0.05, and max_delta_step = 1.

IV. EMPIRICAL EVALUATION

We empirically evaluated SafeRevert (the ML based
method) against the BASELINE heuristic method. We eval-
uate: the overall performance of the different ML models
considered, the importance features used, and compare the
BASELINE method to a selected ML model.

A. Research Questions
RQ1: What is the safety and performance of studied methods
in the context of the developer workflow?

What is the marginal benefit provided by each feature?
Did the chosen method significantly improve perfor-
mance over the baseline method while maintaining

required safety levels?

RQ2:
RQ3:



B. Measuring Safety

As mentioned in section I-D, an incorrectly reverted change
causes unacceptably high developer toil. Safety is the like-
lihood that a method will produce a false positive result
by incorrectly categorizing a change as being a culprit and
reverting it. This is a referred to as a Bad Revert while
correctly reverting a change that introduced a bug is a Good
Revert. The total number of reverts is Bad Reverts + Good
Reverts. A change that should have been reverted but wasn’t
is a Missed Good Revert and a change that was correctly not
reverted is a Avoided Bad Revert.

In terms of classic terminology for evaluating binary clas-
sifiers:

1) Good Revert = True Positive (TP)

2) Bad Revert = False Positive (FP)

3) Avoided Bad Revert = True Negative (TN)
4) Missed Good Revert = False Negative (FN)

The safety properties we are most interested are (a) the total
number of bad reverts, (b) total number of bad reverts per
day, and (c) the bad revert rate. The bad revert rate (BRR)
is the percentage of bad reverts out of the total number of
reverts = P /rp 1 Fp. This is otherwise known as the False
Discovery Rate (FDR). Note, that FDR = 1 — Precision =
1—TP/rp + Fp. Thus, safety can either be stated in terms of
precision (ex. precision must be above 99%) or in terms of
bad revert rate (ex. bad revert rate must be below 1%).

In this evaluation we will consider a method safe if its bad
revert rate is below 1%, there are fewer than 14 bad reverts
in the final validation set, and there are no more than 5 bad
reverts per day.

Why these numbers? Our end goal is a production SafeRe-
vert. Our small team supports a large number of services and
users of TAP. We need to minimize toil for the 2 engineers
per week who are “oncall” for them. The numbers above were
selected to be manageable for us in terms of the overhead re-
quired for communicating with our users and investigating the
root cause of bad reverts. While these numbers are subjective
and dependent on our context, they are meaningful to our team.
We expect other teams supporting central CI systems would
make similar choices.

C. Measuring Performance

If a method is deemed safe (meets above criteria) then it is
an eligible method to be used to pick changes to revert. To
determine whether one safe reversion method is better than
another we look at the how many Good Reverts a method
is able to achieve out of the total possible good reverts. This
corresponds to the metric known as recall = 7P /rp + FN. The
higher a safe method’s recall the better it performs. As with
safety, we prefer methods that are consistent and have low
variability in their reversion recall per day. We then define
performance as the number of breaking changes successfully
reverted both in total and per-day.

D. Evaluation Dataset

Our evaluation dataset consists of roughly 3.5 months of
data split between a training, test, and validation set and
contains ~25,137 unique changes identified by the production
culprit finder as culprits. Each row has a boolean indicating
whether followup verification confirmed the change was in-
deed a culprit. This verification continues to be done in the
manner described in our 2023 paper [4].

For training and evaluation we produce a time-based split:
TRAIN consists of the first 2.5 months, TEST the next ~2
weeks, and VALIDATION the final ~2 weeks. Time based
splits avoid cross-contaminating our training with diffuse
information about types of breakages that may be based on
time-dependent attributes of the codebase. It is important that
the training data is uncontaminated with any data from the time
period where the evaluation occurs. If it is, the evaluation will
not reflect the performance observed in production.

All comparative model and feature evaluation was per-
formed against the TEST set in order to determine our op-
timal ML model configuration, OPTIMAL. We then evaluate
OPTIMAL and BASELINE against the VALIDATION set.

V. RESULTS

RQ1: What is the safety and performance of studied methods
in the context of the developer workflow?

Summary: The XGB(ALL) was best overall, with a
recall of 61.2%, and a bad revert rate of .3%.

Note: This experiment was conducted on the TEST
data set as the VALIDATION set was reserved for RQ3.

Table III summarizes the critical metrics for safety (bad
revert rate) and performance (recall) for the three model types
considered: RandomForest [RF], AdaBoost [ADA], and XG-
Boost [XGB]. Figure 3 shows the Receiver Operator Curves
(ROC) for all 3 model types and their associated area under the
curve (AUC) values. The ROC curve better summarizes model
performance over a wider range of target objectives than the
table which is focused on the safest configuration (minimizing
Bad Revert Rate). For instance if a different application had
a higher tolerance for bad reversion/false positives the ROC
curves show that you could achieve a 90% true positive rate
with a 20% false positive rate.

Safety: The XGB model was the safest overall;
XGB(REAL-TIME) with 4 bad reverts was marginally
safer than XGB(ALL) with 5 bad reverts. In general, XGB
and ADA both outperformed the RF in terms of safety, while
RF was only safe for the REAL-TIME dataset. XGB and
ADA were safe (under our criteria, see Section IV-B) using
all the features or the REAL-TIME subset.

Performance: The highest performing configuration was
XGB(REAL-TIME) and ADA(ALL) which had 1981 Good
Reverts and a recall of 63.0%. XGB(ALL) was a very close
second, with a recall of 61.2%. ADA(ALL) however had a
higher bad revert rate than any of the XGB models.
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Fig. 4: Signal provided by each feature group alone on the XGB
model. AUC is the area under the Reciever Operating Characteristic
(ROC) curve.

We chose XGB(ALL) as our OPTIMAL model for this
paper. While XGB’s safety and performance is comparable
between ALL and REAL-TIME features, observe in Table
IV MIN(ALL) outperforming MIN(REAL-TIME) in terms of
recall. This indicates if some features in the REAL-TIME set
cannot be collected at decision time the model will be more
robust with the inclusion of the AHEAD-OF-TIME features.

RQ2: What is the marginal benefit provided by each feature
group?

Summary: Historical flakiness data was the most
valuable feature set, boosting model recall by 17%,
while change metadata was the least important.

Note: This experiment was conducted on the TEST
data set as the VALIDATION set was reserved for RQ3.

To determine marginal benefit we perform an ablation study
to look at the marginal benefit provided by each feature (as
grouped in Table I). The ablation study was performed using
the XGBoost model which was chosen over AdaBoost due to

its higher recall as seen in Table IIl. Three marginal benefit
experiments were performed:

1) Measure the performance of the model trained against
only the features in a single feature set. We visualize the
results in Figure 4 as an ROC curve. Table II contains the
critical safety and performance metrics of Bad Reverts
(safety) and Recall (performance) as well as the AUC
which summarizes overall model predictive performance
— generally a model with a higher AUC will be more
performant than one with a lower AUC.

2) Measure the Positive(+) Lift provided by adding
a single feature group to our BASE feature (the
number of blaming tests). For instance, we would

add the features in CHANGE_CONTENT to
create a XGB(CHANGE_CONTENT + BASE)
model. The +Lift for Recall is computed as
Recal[ XGB(CHANGE_CONTENT + BASE)] -

Recall[ XGB(BASE)] and similar for AUC of the ROC
curve. The results of this analysis are shown in Table II.

3) Measure the Negative(-) Lift provided by removing a sin-
gle feature group from out ALL feature set. For instance
we would remove the features in CHANGE_CONTENT
to create a XGB(ALL - CHANGE_CONTENT) model.
The —Lift for Recall is computed as Recall[ XGB(ALL)] -
Recall[ XGB(ALL - CHANGE_CONTENT)] and similar
for AUC of the ROC curve. The results of this analysis
are shown in Table II.

As discussed in section III-D3, we attempted to minimize the
feature subsets while providing comparable performance to
the full feature sets. Table IV contains a breakdown of the
performance for these minimal subsets.

RQ3:Did the chosen method improve performance over the
baseline method while maintaining required safety levels?

Summary: XGB(ALL) improved overall recall while
meeting our safety requirements with a Bad Revert
Rate under 1% and an average of 0.6 Bad Reverts
per Day. BASELINE(10) had a recall of 26.3% while
XGB(ALL) had a recall of 55.7% — an improvement of
~ 2.1x.

Note: We used the reserved VALIDATION data set for
this research question.

Table V shows per day metrics comparing XGB(ALL)
against the heuristic BASELINE(10) method. As a reminder
the BASELINE method thresholds the number of blaming tests
to a fixed number. BASELINE(10)’s average bad reverts per
day is 0.86 and its total Bad Revert Rate (BRR) is 1.5%.
XGB(ALL) achieves the overall safety limit with a BRR of
0.5% and has an average bad reverts per day of 0.6 which
meets our safety threshold.

XGB(ALL)’s bad revert rate outperforms BASELINE(10),
with a recall 2.1 times higher than BASELINE(10).
XGB(ALL) made 1,823 total good reverts in the validation



TABLE II: FEATURE ABLATION STUDY using XGBoost to compute the relative impact different types of features have on model performance.
Feature importance is measured for each feature set alone - using the metrics: # bad reverts, # good reverts, recall and AUC of the ROC
curve. The positive(+) and negative(-) lift is computed against Recall and AUC. Positive lift is the improvement of the metric when the
feature set is added to the BASE model. Negative lift is the degradation of the metric when the feature set is removed from the model with

ALL features.

Features Bad Reverts | Good Reverts |Recall (alone) | +Lift(Recall) | -Lift(Recall) | AUC (alone) | +Lift(AUC) | -Lift(AUC)
BASE 1 507 0.161 0.000 0.031 0.770 0.000 0.001
CHANGE_CONTENT |10 236 0.075 0.018 0.011 0.742 0.078 0.001
CHANGE_METADATA |2 11 0.003 0.081 0.034 0.612 0.016 0.001
CHANGE_TOKENS 4 205 0.065 0.208 0.014 0.763 0.085 -0.001
CULPRIT_FINDER 8 1307 0.416 0.168 -0.056 0.894 0.126 0.002
FLAKINESS 0 533 0.170 0.114 0.218 0.941 0.172 0.039
TEST_ATTRIBUTES |1 891 0.283 0.235 -0.015 0.901 0.133 0.011
ALL 5 1925 0.612 0.000 0.000 0.962 0.000 0.000

TABLE III: COMPARISON OF MODEL TYPES ON THE TEST SET.
The safety and performance of the 3 model types (RF, ADA, XGB)
were compared against each other using 3 different feature sets:
AHEAD-OF-TIME, REAL-TIME, and ALL. ADA performed best
for the AHEAD-OF-TIME features while XGB performed best for
the REAL-TIME and ALL feature sets. For the AHEAD-OF-TIME
feature set, although ADA performed the best none of the studied
methods met our safety criterion (BRR < 0.01) on this data set.

Good Reverts | Bad Reverts|Bad Revert Rate | Recall
RF(AHEAD-OF-TIME) 927.000 23.000 0.024| 0.295
ADA(AHEAD-OF-TIME) 605.000 12.000 0.019| 0.192
XGB(AHEAD-OF-TIME) 442.000 9.000 0.020( 0.141
RF(REAL-TIME) 2173.000 11.000 0.005| 0.691
ADA(REAL-TIME) 1838.000 7.000 0.004| 0.585
XGB(REAL-TIME) 1981.000 4.000 0.002| 0.630
RF(ALL) 2554.000 21.000 0.008 | 0.812
ADA(ALL) 1982.000 9.000 0.005| 0.630
XGB(ALL) 1925.000 5.000 0.003| 0.612

TABLE IV: FEATURE MINIMIZATION STUDY: Fewest individual fea-
tures needed for near optimal performance, per availability category.
BRR stands for Bad Revert Rate.

Features Bad Reverts | Good Reverts| BRR | Recall
ALL 5.0 1925.00.003| 0.61
MIN(ALL) 12.0 1912.0]0.006| 0.61
REAL-TIME 4.0 1981.00.002| 0.63
MIN(REAL-TIME) 0.0 959.0(0.000| 0.31
AHEAD-OF-TIME 9.0 442.0(0.020| 0.14
MIN(AHEAD-OF-TIME) 5.0 273.0(0.018| 0.09

set while BASELINE(10) performed 860 good reverts. Based
on the data in Table V XGB(ALL) is both safer and more
performant than BASELINE(10) on the validation data set.

A. Discussion

The proposed method, SafeRevert, is generic and can be
used with any culprit finding algorithm. By grouping indi-
vidual features from different sources of data into logical
feature sets (Table I), performing a detailed feature ablation
study (Fig 4), and running the model on a minimal set of
features (Table IV), we hope to provide a template via which
teams in other contexts build on when adopting the approach
we outline. In particular, while some features used may be
Google specific, our feature ablation study can be replicated on
different features in other software development organizations.

TABLE V: PER-DAY PERFORMANCE AND SAFETY OF BASE-
LINE(10) vs XGB(ALL) ON VALIDATION SET. BR stands for
Bad Reverts. GR stands for Good Reverts. BRR stands for Bad
Revert Rate. XGB(ALL) is safe: with average bad reverts per day
of 0.6 (< 2) and bad recall rate of 0.005 (< 0.01). XGB(ALL)
has recall rate that is ~ 2.1x higher than BASELINE(10). Overall
XGB(ALL) performs an average of 121 good reverts per day while
BASELINE(10) performs 57, a substantial improvement.

XGB(ALL) BASELINE(10)
Date BR| GR|BRR|Recall|| BR| GR| BRR|Recall
2023-10-07| O 15(0.000| 0.333 0 11[{0.000| 0.244
2023-10-08| 0 11{0.000| 0.440 0 60.000( 0.240
2023-10-09| 1| 146(0.007| 0.535 2| 72]0.027| 0.264
2023-10-10| O 183]0.000| 0.575 1| 83/0.012| 0.261
2023-10-11| 0| 204{0.000| 0.581 2| 99]0.020( 0.282
2023-10-12| 0| 160{0.000| 0.552 0| 80(0.000| 0.276
2023-10-13| 0| 172]0.000| 0.585 0| 75(0.000| 0.255
2023-10-14| 0 19(0.000| 0.352 1 710.125| 0.130
2023-10-15| 0 16{0.000| 0.552 0 510.000( 0.172
2023-10-16| 0| 153{0.000| 0.591 0| 82(0.000| 0.317
2023-10-17| 0| 201{0.000| 0.581 0| 102(0.000| 0.295
2023-10-18| 3| 194]0.015| 0.553 4| 80(0.048| 0.228
2023-10-19| 4| 171]0.023| 0.564 1| 89]/0.011| 0.294
2023-10-20| 0| 155{0.000| 0.546 0 62(0.000| 0.218
2023-10-21] 1 23(0.042| 0.479 2 710.222| 0.146
Total 9| 1823(0.005| 0.557|| 13| 860|0.015| 0.263
Average 0.6(121.5 - -(10.86|57.3 - -

While we don’t expect a team implementing SafeRevert to
achieve the exact Recall and Bad Revert Rates we report we
do expect this method to out perform the BASELINE method
once an appropriate set of features is identified.

B. Threats to Validity

Our dataset may misrepresent information available at in-
ference time in the forthcoming service as it may include
information not available to us at our decision time. This
is due to using offline data in the dataset as the production
system based on this paper is currently under construction.
We adjust this threat by evaluating performance restricted to
features available independent of any culprit finding event and
restricting our real-time data to a time bound relative to change
submission time.



The data presented in this final manuscript differs slightly
than the reviewed manuscript. At the time of review approx-
imated 15% of the dataset was lacking verification results
(collected using the method described by Henderson [4]). This
was disclosed in this section to the reviewers and we made
two conservative assumptions: 1) any culprit change lacking
verification results was considered a false positive and 2) we
assumed the BASELINE method was correct for those changes
(inflating the BASELINE methods performance versus the
studied ML methods for SafeRevert). Since the peer review
was completed, a bug in the verification system was identified
and fixed. The bug caused a proportion of incorrect culprit
changes to “get stuck” in a queue waiting for an additional
test execution due to a typo in a comparison (using > instead
of >=). Once the bug was fixed, the research team was able
to rerun the study with the additional label data.

Post-rerun we observed: 1) the BASELINE method per-
formed worse and 2) the studied methods were robust to
the change in labeling data. In the reviewed manuscript,
XGB(ALL) had the following results in RQ3: 13 Total Bad
Reverts, 1817 Good Reverts, 0.7% Bad Revert Rate, and
55.8% Recall; BASELINE(S) was compared against and had 8
Total Bad Reverts, 1286 Good Reverts, 0.6% Bad Revert Rate,
and 39.4% Recall. Compare against Table V and Figure 2. We
switched to using BASELINE(10) for this final manuscript as
it is the production method currently used at Google.

VI. RELATED WORK

In this paper, we are presenting what we believe to be a
novel problem to the wider software engineering community:
how to safely choose changes to revert with incomplete but
suggestive evidence. This problem relies on identifying these
problematic changes. In our case we identify the problematic
changes to revert via automated culprit finding [14], [23], [24],
[25], [26], [27], [28], [29], [30], [4].

Culprit finding’s development has often occurred outside of
the academic literature. The first reference to the process of
using binary search to identify a bug was in Yourdon’s 1975
book on Program Design: Page 286, Figure 8.3 titled “A binary
search for bugs” [31]. The process is explained in detail in the
BUG-HUNTING file in the Linux source tree in 1996 by Larry
McVoy [32], [33]. By 1997, Brian Ness had created a binary
search based system for use at Cray with their “Unicos Source
Manager” version control system [34], [33]. Previously in [4]
we had credited Linus Torvalds for the invention based on
lack of findable antecedent for his work on the git bisect
command [14]. We regret the error and recognize the above
individuals for their important contributions.

Other methods for identifying buggy code or breaking
changes have been studied (some widely) in the literature.
Fault Localization looks to identify the buggy code that is
causing either operational failure or test failures [35], [36].
Methods for fault localization include: delta debugging [13],
statistical coverage based fault localization [37], [38], [39],
[40], [41], [42], information retrieval (which may include

historical information) [43], [44], [45], and program slicing
[46], [47], [48].

Bug Prediction attempts to predict if a change, method,
class, or file is likely to contain a bug [49], [50], [51]. This idea
has conceptual similarities to the work we are doing in this
paper where we are using similar metrics to predict whether
or not a change which has been implicated by culprit finding
is in fact the change that introduced the bug. Our methods
could be potentially improved by incorporating the additional
features used in the bug prediction work such as the change
complexity, code complexity, and object-oriented complexity
metrics.

Test Case Selection [52], [53], [54], [55], [56], [57] and Test
Case Prioritization [58], [59], [60], [57] are related problems to
the change reversion problem we study. Instead of predicting
whether or not a change caused a known test failure in
Test Case Selection/Prioritization often the change is used to
predict whether a given test will fail before it is run. There is
a large body work in that uses dynamic information from past
test executions (such as code coverage) to inform the selection
process. We believe this hints that such information could be
highly informative for the change reversion problem as well.

Finally, there are a family of methods for finding bug
inducing commits for the purpose of supporting studies that
data mine software repositories [61], [62], [63], [64], [65].
These methods typically used to conduct a historical analysis
of a repository rather than as an online detection as in culprit
finding.

VII. CONCLUSION

We presented: SafeRevert a method for improving systems
that automatically revert changes that break tests. SafeRevert
was developed as a way to improve the number bad changes
automatically reverted while maintaining safety (rarely revert-
ing good changes). To evaluate SafeRevert, we performed an
empirical evaluation comparing the performance of SafeRevert
against the baseline method that is currently utilized in produc-
tion which utilizes a simple heuristic to determine if a change
is safe to revert: the number of tests which “blame” the culprit
change. When evaluating RQ3 in Section V, it was observed
that the XGB(ALL) configuration of SafeRevert doubled the
number changes reverted while reducing the number of bad
reverts performed (see Table V).

While it is unlikely that a replication study in a different
development environment would reproduce our exact results
we do expect based on the robust difference observed between
SafeRevert and BASELINE that SafeRevert (or similar ML
based method) will be able to improve the number of changes
eligible for automatic reversion. We hope that by introducing
this problem to the larger software engineering community that
new and innovative approaches to solving it will be developed.
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