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Abstract—When a change introduces a bug into a large
software repository, there is often a delay between when the
change is committed and when bug is detected. This is true even
when the bug causes an existing test to fail! These delays are
caused by resource constraints which prevent the organization
from running all of the tests on every change. Due to the delay,
a Continuous Integration system needs to locate buggy commits.
Locating them is complicated by flaky tests that pass and fail
non-deterministically. The flaky tests introduce noise into the
CI system requiring costly reruns to determine if a failure was
caused by a bad code change or caused by non-deterministic
test behavior. This paper presents an algorithm, Flake Aware
Culprit Finding, that locates buggy commits more accurately than
a traditional bisection search. The algorithm is based on Bayesian
inference and noisy binary search, utilizing prior information
about which changes are most likely to contain the bug. A large
scale empirical study was conducted at Google on 13,000+ test
breakages. The study evaluates the accuracy and cost of the new
algorithm versus a traditional deflaked bisection search.

I. INTRODUCTION

Fast, collaborative, large scale development is enabled
by the use of Continuous Integration in a mono-repository
(monorepo) environment where all of the source code is
stored in a single shared repository [1]. In a monorepo, all
developers share a single source of truth for the state of
the code and most builds are made from “head” (the most
recent commit to the repository) using the source code for all
libraries and dependencies rather than versioned pre-compiled
archives. This enables (among other things) unified versioning,
atomic changes, large scale refactorings, code re-use, cross
team collaboration, and flexible code ownership boundaries.

Very large scale monorepos (such as those at Google [1],
[2], Microsoft [3], and Facebook [4]) require advanced systems
for ensuring changes submitted to the repository are properly
tested and validated. Continuous Integration (CI) [5] is a
system and practice of automatically integrating changes into
the code repository that serves as the source of truth for the
organization. In modern environments, integration involves
not only performing the textual merge required to add the
change but also verification tasks such as ensuring the software
compiles and the automated tests pass both on the new change
before it is integrated and after it has been incorporated into
the main development branch.
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Fig. 1: An example timeline showing when tests are run by a
continuous integration system. Tests are only run a “milestone”
changes where there is backend machine execution capacity to run
tests. Some tests are throttled (as the test owner isn’t paying for
continuous testing), some tests are run multple times to deflake, and
finally some tests will not be run because they were not statically
affected by the change [6].

Due to resource constraints, tests are only run at specific
versions (called milestones at Google) and many tests may
be skipped because they were not affected by the intervening
changes (as determined by static build dependencies) [6]. This
process is illustrated in Figure 1. A test is considered passing
at a version b if and only if it has a passing result at the most
recent preceding affecting version. Formally, if there exists a
version a where the test is passing and a ≤ b and there does
not exist an intervening version c, a < c ≤ b, which affects
the test then the test is passing at version a. A project’s status
is considered passing at a version b if all tests are passing
(using the above definition) at version b.

If a test t is failing (consistently) at a milestone version
m, it may not necessarily mean that version m introduced a
change which broke test t. As shown in Figure 1 one or more
changes between m and the previous milestone at which test
t was run may have introduced a breaking change. Figuring
out which version introduced the breakage is called culprit
finding.

Many companies now employ automated culprit finding
systems. These systems typically implement a (possibly n-$31.00 ©2023 IEEE, DOI TBA



way) “bisect search” similar to the one built into the Git
version control system [7]. Git’s bisect command runs a binary
search on the versions between the first known breaking
version and the last known passing version to identify the
version which broke the test.

In the Google environment, there are two problems with a
traditional bisection algorithm [7]: (1) it does not account for
flaky (non-deterministic) tests, and (2) when using k-reruns to
deflake the search accuracy plateaus while build cost continues
to increase linearly. This paper proposes a new method for
culprit finding which is both robust to non-deterministic (flaky)
test behavior and can identify the culprit with only logarithmic
builds in the best case by using prior information to accelerate
the search.

A. Contributions

1) A Flake Aware Culprit Finding (FACF) algorithm.
2) A mathematical model for culprit finding adjusting for

non-deterministic test behavior.
3) A large scale empirical study of FACF on Google’s

mono repository comparing its performance against the
traditional bisect algorithm.

4) The study also evaluates the effectiveness: (a) optimiza-
tions for FACF, and (b) adding deflaking runs to Bisect.

II. BACKGROUND

At Google, the Test Automation Platform (TAP) runs most
tests that can run on a single machine (and do not use the
network except for the loopback interface)1 and can run in
under 15 minutes.2 Figure 1 illustrates at a high level of how
TAP works. First, (not illustrated) tests are grouped into logical
projects by the teams that own them. Then, (for accounting and
quota allocation purposes) those projects are grouped into very
high level groupings called Quota Buckets. Each Quota Bucket
is scheduled independently when build resources are available.
This means that TAP does not run every test at every version.
Instead it only runs tests periodically at select versions called
“Milestones” [2], [8], [9].

When scheduling a Milestone, all the tests that are built and
run with the same command line flags to the build system3

are grouped into a set. That set is filtered to remove tests
that haven’t been affected by a change to themselves or a
build level dependency [6], [8], [10]. This is a very coarse
grained form of static dependence-based test selection [11],
[12], [13]. Google’s use of build dependence test selection
has been influential and it is now also used at a number of

1In practice the restriction on network usage on TAP is somewhat loose.
There are legacy tests that have been tagged to allow them to utilize the
network and there is an on going effort to fully eliminate network usage on
TAP.

2Other CI platforms exist for integration tests that span multiple machines,
use large amounts of RAM, or take a very long time to run. The algorithm
presented in this paper has also been implemented for one of those CI systems
but we will not present an empirical evaluation of its performance in that
environment in this paper. In general, Culprit Finding is much more difficult in
such environments as tests may use a mixture of code from different versions
and network resources may be shared across tests.

3An internal version of Bazel https://bazel.build/.

other corporations who have adopted Bazel or similar tools
[14], [4]. Finally, that (potentially very large) set of “affected”
tests is sent to the Build System [15] which batches them into
efficiently sized groups and then builds and runs them when
there is capacity.

Since tests are only run periodically even with accurate
build level dependence analysis to drive test selection, there
are usually multiple changes which may have introduced a
fault in the software or a bug in the test. Finding these “bug
inducing changes” – which we call culprits – is the subject of
this paper. The process of finding these changes is aggravated
by any non-deterministic behavior of the tests and the build
system running them.

A. Flaky Tests

When a test behaves non-deterministically, we refer to it,
using the standard term, as a flaky test. A flaky test is one that
passes or fails non-deterministically with no changes to the
code of either the test or the system under test. At Google, we
consider all tests to be at least slightly flaky as the machines
that tests are running on could fail in ways that get classified
as a test failure (such as resource exhaustion due to a noisy
neighbor resulting in a test exceeding its time limit). We
encourage everyone to adopt this conservative view for the
purposes of identifying culprits.

An important input to the culprit finding algorithm we are
presenting is an estimate of how flaky a test might be, as
represented by an estimated probability of the test failing due
to a flaky failure. We will denote the estimated probability of
failure due to a flake for a test t as f̂t. The actual probability
of failure due to a flake will be denoted ft (it is impossible
in practice to know ft). At Google, we estimate f̂t based
on the historical failure rate of the test. Apple and Facebook
recently published on their work in on estimating flake rates
[16], [17]. One challenge with flake rate estimation is that a
single change to the code can completely change the flakiness
characteristics of a test in unpredictable ways. Making the
flake rate estimation sensitive to recent changes is an ongoing
challenge and one we partially solve in this work by doing
live re-estimation of the flake rate during the culprit finding
process itself.

B. Culprit Finding

Informally, Culprit Finding is the problem of identifying a
version c between two versions a and b such that a < c ≤
b where a given test t was passing at a, failing at b, and
c is the version which introduced the fault. At Google we
consider the passing status of a test to be 100% reliable and
therefore version a cannot be a culprit but version b could be
the culprit. For simplicity, this paper only considers searching
for the culprit for a single test t (which failed at b) but in
principle it can be extended to a set of tests T .

Google’s version control system, Piper [1], stores the main-
line history as a linear list of versions. Each version gets a
monotonically, but not sequentially, increasing number as its
version number called the Changelist Number or CL number

https://bazel.build/


for short. Thus, our implementation and experiments do not
consider branches and merges as would be necessary for
a Distributed Version Control System (DVCS) such as git.
However, only trivial changes to the mathematics are needed
to apply our approach to such an environment [7].

Thus, the versions larger than a and smaller or equal to b
are an ordered list of items we will call the search range and
denote as S = {s1, ..., sn−1, sn} where sn = b. During the
search, test executions will be run (and may be run in parallel)
at various versions. The unordered set of executions at version
si will be denoted Xi.

For the purposes of culprit finding, based on the status of
failure detected, the build/test execution statuses are mapped to
one of 2 possible states: PASS or FAIL. We denote (for version
si): the number of statuses that map to PASS as PASSES(Xi)
and the number of statuses that map to FAIL as FAILS(Xi).

C. Bisection

The Bisect algorithm is a specialized form of binary search.
It runs tests (or more generally any operation on the code that
can return PASS or FAIL) to attempt to identify which commit
introduced a bug. Algorithm 1 gives the psuedo-code for this
procedure. Bisect is now commonly implemented in most
version control systems (see git bisect and hg bisect

as common examples). In the case of Distributed Version
Control Systems (DVCS) systems such as ‘git‘ and ‘hg‘ the
implementation of bisect is somewhat more complex as they
model version history as a directed acyclic graph [7].

The algorithm presented in Alg 1 has two important changes
from the standard binary search. First, it takes into account
that a test can fail and pass at the same version and the
firstFail function specifically looks for a failure after the
lastPass. Second, it takes a parameter k which allows the
user to specify that each test execution be run k times. This
allows the user to “deflake” the test executions by rerunning
failures. Our empirical evaluation (Section V) examines both
the cost and effectiveness of this simple modification. While
this simple modification to bisect may be reasonably effective
for moderately flaky tests, it does not explicitly model the
effect of non-deterministic failures on the likelihood of a
suspect to be the culprit.

D. Guessing Games and Noisy Searches

One can view the culprit finding scenario as a kind of
guessing game. The questioner guesses the test always fails
at a given suspect version. A test execution at that suspect
acts as a kind of “responder” or “oracle” which answers. The
test execution is an unreliable oracle which may answer FAIL
when it should have answered PASS. But, the oracle never
answers PASS when it should have answered FAIL – note the
asymmetry.

This kind of guessing game is a Rényi-Ulam game, which
has been well characterized by the community [18]. The main
differences from the “classical” games presented by Rényi and
separately by Ulam is (a) the format of the questions and (b)
the limitations placed on the oracle responding incorrectly. In a

Algorithm 1: Bisect(t, S, k) – pseudo code for a bisect search
capable of executing multiple reruns to deflake flaky failures.
Can be trivially modified to do an r-ary search by modifying
line 17 to divide by r and executing the r tests at suspects:
{sm, s2·m, ..., s(r−1)·m}.

Param : t, the test to culprit find
Param : S, an ordered list of suspects
Param : k, number of re-runs to do for each test execution
Result : Culprit as si ∈ S or NONE

1 let
2 fn lastPass(X: set of executions) → int:
3 if ∃i (PASSES(Xi) > 0) :

4 return max
{
i

∣∣∣∣ si ∈ S
and PASSES(Xi) > 0

}
5 else:
6 return 0
7 fn firstFail(X: set of executions) → int:
8 if ∃i (FAILS(Xi) > 0) :

9 return min

i

∣∣∣∣∣∣
si ∈ S

and FAILS(Xi) > 0
and i > lastPass(X)


10 else:
11 return length(S) + 1
12 fn complete(X: set of executions) → boolean:
13 return lastPass(X)+1 == firstFail(X)
14 in
15 X = ∅ // a set of executions
16 while not complete(X) :
17 m = (lastPass(X) + firstFail(X))/2
18 X = X ∪ executeTestAtVersion(t, S[m], k)
19 if c := firstFail(X); c > len(S) : return NONE
20 else: return S[c]

common formulation of the Rényi-Ulam game, the questioner
is trying to “guess the number” between (for instance) 1
and 1,000,000. Each question is allowed to be any subset
of numbers in the search range. The responder or oracle is
allowed to lie at most a fixed number of times (for instance
once or twice). This formulation has allowed the community
to find analytic solutions to determine the number of questions
in the optimal strategy. We refer the reader to the survey from
Pelc for an overview of the field and its connection with error
correcting codes [18]. The culprit finding scenario is “noisy
binary search” scenario where the oracle only lies for one type
of response. Rivest et al. [19] provide a theoretical treatment
of this “half-lie” variant (as well as the usual variation).

E. Bayesian Binary Search

Ben Or and Hassidim [20] noted the connection between
these “Noisy Binary Search” problems and Bayesian inference.
Our work builds off of their formulation and applies it to the
culprit finding setting. In the Bayesian setting, consider the
probability each suspect is the culprit and the probability there
is no culprit (i.e. the original failure was caused by a flake).
These probabilities together form a distribution:

(Pr [there is no culprit]) +
n∑

i=1

Pr [si is the culprit] = 1



We represent this distribution with Pr [Ci] with i = 1..(n+1)
where

Pr [Ci] = Pr [si is the culprit] , ∀ i ∈ [1, n]

Pr [Cn+1] = Pr [there is no culprit]
(1)

Initially when the original failure is first detected at sn
and the search range is created, the probability distribution is
uniform: Pr [Ci] = 1/(n + 1) for all i ∈ [1, n+1]. Now consider
new evidence E arriving. In the Bayesian model, this would
update our probability given this new evidence:

Pr [Ci|E] =
Pr [E|Ci] · Pr [Ci]

Pr [E]
(2)

In the above equation, the Pr [Ci] is the prior probability and
the probability Pr [Ci|E] is the posterior probability. In the
culprit finding context, the new evidence is typically newly
observed test executions. However, there is no reason we
cannot take into account other information as well.

In the Bayesian framework, new evidence is applied itera-
tively. In each iteration, the prior probability is the posterior
probability of the previous iteration. Since multiplication is
commutative, multiple pieces of evidence can be applied in
any order to arrive at the same posterior probability:

Pr [Ci|E1, E2] =
Pr [E2|Ci]

Pr [E2]

Pr [E1|Ci]

Pr [E1]
Pr [Ci]

=
Pr [E1|Ci]

Pr [E1]

Pr [E2|Ci]

Pr [E2]
Pr [Ci]

(3)

After the current posterior probability has been calculated,
it is used to select the next suspect to execute a test at. In
the traditional Bayes approach, the suspect to examine is the
one with the maximum posterior probability. However, in the
context of a noisy binary search, the suspects are ordered so a
PASS at suspect si indicates a PASS at all suspects prior to si.
Following Ben Or and Hassidim [20], we convert the posterior
distribution to a cumulative probability distribution and select
the first suspect with a cumulative probability ≥ 0.5.

III. FLAKE AWARE CULPRIT FINDING

Now we introduce our algorithm, Flake Aware Culprit
Finding (FACF), in the Bayesian framework of Ben Or and
Hassidim [20]. As above, let Pr [Ci] be the probability that
suspect si is the culprit and Pr [Cn+1] be the probability
there is no culprit. These probabilities are initialized to some
suitable initial distribution such as the uniform distribution.

To update the distribution with new evidence E in the form
of a pass or fail for some suspect k, apply Bayes rule (Equation
2). Note that Pr [E] can be rewritten by Bayes rule in terms of
a sum by marginalizing over the likelihood that each suspect
j could be the culprit:

Pr [E] =

n∑
j=1

Pr [E|Cj ]Pr [Cj ] (4)

There are two types of evidence: test executions with state
PASS or FAIL at suspect i. We indicate these as the events Pi

and Fi respectively. The marginalized probability of a PASS

at i given there is a culprit at j is:

Pr [Pi|Cj ] =

{
1− f̂t if i < j

0 otherwise
(5)

The marginalized probability of a FAIL at i given there is a
culprit at j is:

Pr [Fi|Cj ] =

{
f̂t if i < j

1 otherwise
(6)

With Equation 5, we write a Bayesian update for PASS at
suspect k as the following. Given

Pr [Ci|Pk] =
Pr [Pk|Ci]Pr [Ci]

Pr [Pk]
(7)

let

Pr [Pk] =

n∑
j=1

Pr [Pk|Cj ]Pr [Cj ]

=

n∑
j=k+1

(1− f̂t)Pr [Cj ]

(8)

then

Pr [Ci|Pk] =

{
(1 − f̂t)Pr [Ci]/Pr [Pk] if k < i

0 otherwise
(9)

The update using Equation 6 for FAIL at suspect k is
similar. Given

Pr [Ci|Fk] =
Pr [Fk|Ci]Pr [Ci]∑n

j=1 Pr [Fk|Cj ]Pr [Cj ]
(10)

let

Pr [Fk] =

n∑
j=1

Pr [Fk|Cj ]Pr [Cj ]

=

k∑
j=1

Pr [Cj ] +

n∑
j=k+1

f̂tPr [Cj ]

(11)

then

Pr [Ci|Fk] =

{
f̂tPr [Ci]/Pr [Fk] if k < i
Pr [Ci]/Pr [Fk] otherwise

(12)

A. The FACF Algorithm

Algorithm 2 presents the pseudo code for a culprit finding
algorithm based on the above Bayesian formulation. It takes
a prior distribution (the uniform distribution can be used), an
estimated flake rate f̂t, and the suspects. It returns the most
likely culprit or NONE (in the case that it is most likely there
is no culprit). The FACF algorithm builds a set of evidence
X containing the observed passes and failures so far. At each
step, that evidence is converted to a distribution using the math
presented above. Then, FACF calls Algorithm 3 NextRuns to
compute the next suspect to run.
NextRuns converts the probability distribution into a cumu-

lative distribution. It then selects the suspects with cumulative



Algorithm 2: FlakeAware(t, S, priorDistribution, f̂t) – psuedo
code for the FACF algorithm. As with the the Bisect algorithm you
can trivially modify it to conduct an r-ary search by passing an
r value into “NextRuns” on line 31 and running all all returned
indices. Note, the priorDistribution should be of length(S) +1 as,
by convention, the last element of the distribution is the probability
there is no culprit.

Param : t, the test to culprit find
Param : S, an ordered list of suspects
Param : priorDistribution, float[] a probability distribution of

size length(S)+1.
Param : f̂t, an estimated flake rate for test t
Result : Culprit as si ∈ S or NONE

1 let
2 fn passUpdate(priorCulpritPr: float[], k int) → float[]:
3 C = priorCulpritPr
4 C′ = new float[length(C)]
5 Pr [Pk] =

∑n
j=k+1(1− f̂t)Pr [Cj ]

6 for Ci in C :
7 if k < i :
8 C′

i = (1 − f̂t)Ci/Pr [Pk]

9 else:
10 C′

i = 0
11 return C′

12 fn failUpdate(priorCulpritPr: float[], k int) → float[]:
13 C = priorCulpritPr
14 C′ = new float[length(C)]
15 Pr [Fk] =

∑k
j=1 Cj +

∑n
j=k+1 Cj f̂t

16 for Ci in C :
17 if k < i :
18 C′

i = f̂tCi/Pr [Fk]

19 else:
20 C′

i = Ci/Pr [Fk]

21 return C′

22 fn asDistribution(X: set of executions) → float[]:
23 dist = copy(priorDistribution)
24 for Si in S :
25 for j = 0; j < PASSES(Xi); j++ :
26 dist = passUpdate(dist, i)
27 for j = 0; j < FAILS(Xi); j++ :
28 dist = failUpdate(dist, i)

29 in
30 X = ∅ // a set of executions
31 dist = asDistribution(X)
32 while max(dist) ≤ threshold :
33 runs = NextRuns(dist, 1)
34 if length(runs) == 0 :
35 break
36 m = runs[0]
37 X = X ∪ executeTestAtVersion(t, S[m], k)
38 dist = asDistribution(X)
39 if c := argmax(dist); c > len(S) : return NONE
40 else: return S[c]

probability over a set of thresholds and returns them. The
version of NextRuns we present here has been generalized to
allow for k parallel runs and also contains a minor optimiza-
tion on lines 10-11. If the suspect si−1 prior to the selected
suspect si hasn’t been selected to run and its cumulative
probability is above 0 then the prior suspect si−1 is selected
in favor of si. This optimization ensures that we look for the
passing run preceding the most likely culprit before looking

Algorithm 3: NextRuns(distribution, k) – psuedo code for a
function that computes the next suspects to execute tests on for
a given distribution giving the likelihood that each suspect is the
culprit. May return no runs if only the last entry in the distribution
is above the threshold to run at (indicating there is no culprit). By
convention the last element of the distribution is the probability
there is no culprit.

Param : distribution, a finite, discrete probability distribution
Param : k, number of parallel runs to conduct
Result : The indices of the suspects to execute the next run

at.

1 cdf = cumulativeDistribution(dist)
2 thresholds = {i/(k + 1) | i = 1..k}
3 tidx = 0
4 runs = list()
5 for cidx = 0; cidx < length(cdf)-1; cidx++ :
6 if tidx ≥ len(thresholds) :
7 break
8 while (tidx < len(thresholds)

and cdf[cidx] ≥ thresholds[tidx]) :
9 if no runs yet at cidx-1 and cdf[cidx-1] > 0 :

10 runs.append(cidx-1)
11 else:
12 runs.append(cidx)
13 tidx++
14 return runs

for a failing run at the culprit.

B. Choosing the Thresholds in NextRuns

Another optimization can be made to NextRuns by changing
the thresholds used to select suspects. Instead of simply divid-
ing the probability space up evenly it uses the observation that
the information gain from a PASS is more than the gain from
a FAIL. Modeling that as I(Pi) = 1 and I(Fi) = 1− f̂t, we
can compute the expected information gain for new evidence
at suspect si as E [I(si)] = I(Pi)Pi + I(Fi)Fi. Expanding
from the marginalized equations 5 and 6 gives

E [I(si)] = (1− f̂t)(n+ if̂t − 1) (13)

Computing the cumulative expectation over
{E [I(s1)] , ...,E [I(sn+1)]} and normalizing allows us
to select the suspect that maximizes the information gain.
The empirical evaluation (Section V) examines the effect of
this optimization. The importance of the supplied flake rate
estimate (f̂t) is also examined in Section V.

C. Prior Probabilities for FACF

The prior distribution supplied to Algorithm 2 does not have
to be a uniform distribution. Instead, it can be informed by
any other data the culprit finding system might find useful. At
Google, we are exploring many such sources of data, but so
far are only using two primary sources in production.

First, we have always used the static build dependence graph
to filter out non-affecting suspects before culprit finding [6]. In
FACF, we take that a step further and, using a stale snapshot
for scalability, we compute the minimum distance in the build
graph between the files changed in each suspect and the test
being culprit-found [2]. Using these distances, we form a



probability distribution where the suspects with files closer
to the test have a higher probability of being the culprit [21],
[22]. Second, we look at the historical likelihood of a true
breakage (versus a flaky one) to determine the probability that
there is no culprit. Combining that distribution with the one
from the minimum build distance forms a prior distribution
we use for culprit finding.

Using this scheme, flaky tests tend to get reruns at the sn
(the suspect where the failure was detected) as their first test
executions during culprit finding. This is intentional as a large
fraction of the search ranges we culprit find tend to be flaky
and this reduces the cost of proving that. In the empirical
evaluation (Section V), we examine the effect of the prior
distribution on both cost and accuracy.

IV. CULPRIT VERIFICATION FOR ACCURACY EVALUATION

The previous sections detailed our culprit finding algorithm
(FACF) and the baseline algorithm we compare against (de-
flaked bisection). In order to evaluate the accuracy of a culprit
finding system for a particular dataset, we need to know which
commits are the actual culprit commits. If the actual culprit
commits are known, then we can compute the usual measures
(True Positive Rate, False Positive Rate, Accuracy, Precision,
Recall, etc...) [23]. Previous work in culprit finding, test case
selection, fault localization and related research areas have
often used curated datasets (e.g. Defects4J [24]), bug databases
[25], [26], [27], and synthetic benchmarks with injected bugs
[28], [29]. But our primary interest is in the accuracy of the
algorithms in the Google environment, not the accuracy on
open source bug databases, curated datasets, or synthetic bugs.

At Google, we do not have a comprehensive database of
developer investigations of every continuous integration test
failure – indeed there are far too many failures per day for
developers to examine and evaluate every single one. We also
didn’t want to completely rely on human feedback to tell us
when our culprit finding systems have identified the wrong
culprit – as had been previously done [22].

Instead, we wanted to be able to verify whether or not an
identified culprit for a particular test and search range is correct
or not. The verification needs to be automated such that the we
can operationally monitor the accuracy of the deployed system
and catch any performance regressions in the culprit finder.
Continuous monitoring ensures a high quality user experience
by alerting our team to accuracy degradations.

A. Culprit Finding Conclusions

A culprit finder may draw one of two conclusions:
→ FI: FLAKE_IDENTIFIED the culprit finder determined the

status transition was caused by non-deterministic behavior.
→ CVI: CULPRIT_VERSION_IDENTIFIED(version) the

culprit finder determined a specific version was identified
as the culprit.

The verification system will label each conclusion examined
with either CORRECT or INCORRECT from which we can define
the standard counts for True and False Positives and Negatives.
Accuracy, Precision, and Recall can then be directly computed.

B. When is a Culprit Incorrect?

For ease of discussion, we will use the notation introduced
in Section II-B for the search range S with s0 indicating
the previous passing version, sn indicating the version where
the failure was first detected, and sk indicating the identified
culprit. Now, consider the two cases
1. FLAKE_IDENTIFIED these are incorrect if no subsequent

runs pass at the version where the original failure was
detected (no flaky behavior can be reproduced).

2. CULPRIT_VERSION_IDENTIFIED(version) these are
incorrect if we can prove any of the following:
a) A pass at sn indicates the failure was a flake.
b) A pass at the culprit sk indicates that the culprit was

incorrectly identified.
c) No passes detected at the version prior to the culprit,

sk−1, indicates that the culprit was incorrectly identi-
fied.

Additionally the following conditions indicate the culprit
may have been misidentified due to a test dependency on
either time or some unknown external factor:
a) No passes are identified at s0, indicating the test

failure may be time or environment dependent (and the
conclusion cannot be trusted).

b) No pass at s0 is detected prior (in the time dimension)
to a failure at sn.

c) No failure at sn is detected prior (in the time dimen-
sion) to a pass at s0.

d) No pass at sk−1 is detected prior (in the time dimen-
sion) to a failure at sk.

e) No failure at sk is detected prior (in the time dimen-
sion) to a pass at sk−1.

f) Verification is not reproducible 17 hours later.4

Thus, our approach for determining whether or not a culprit
is correct is to do extensive reruns for a particular conclusion.

C. How Many Reruns to Conduct to Verify a Conclusion

A test run x times fails every time with the rate f̂x
t . If we

want to achieve confidence level C (ex. C = .99999999) of
verifier correctness, we can compute the number of reruns to
conduct for each check with x =

⌈
log(1 − C)/log

(
f̂t

)⌉
.

D. Sampling Strategy

While it would be ideal to verify every single culprit
for every single test, the expense, in practice, of such an
operation is too high. We conduct verification with a very
high confidence level (C = 0.99999999) and a minimum on
the estimated flakiness rate of 0.1 to ensure a minimum of
8 reruns for each check even for targets that have not been
historically flaky. With such an expensive configuration, we
can only afford the following sampling strategy.

1) Randomly sample at 1% of culprit finding conclusions.

4The exact number of hours isn’t so important. The main thing is to repeat
the verification at a suitable interval from the original attempt.



2) Sample the first conclusion for each unique culprit ver-
sion.

We tag which sampling strategy was used to sample a par-
ticular conclusion allowing us to compute statistics for each
sampling frame independently.

E. The Verified Culprits Dataset

Using our production culprit finders based on the FACF
algorithm and a verifier implementing the above verification
strategy, we have produced an internal dataset with 144,130
verified conclusions in the last 60 days, which we use in
Section V to evaluate the performance of the algorithms
presented in this paper. Note, because the evaluation of an
algorithm is also expensive, we only conduct the evaluation
on a subset of the whole dataset.

While we are unable to make the dataset public, we encour-
age others to use our verification approach on their own culprit
finding systems and when possible share these datasets with
the external community for use in future studies. Such datasets
are not only useful for culprit finding research but also for
fault localization, test prioritization, test selection, automatic
program repair, and other topics.

V. EMPIRICAL EVALUATION

We empirically evaluated the behavior of the probabilistic
Flake Aware Culprit Finding (FACF) algorithm, compared it
to the traditional Bisect algorithm [7], evaluated the effec-
tiveness of adding deflaking runs to Bisect, and evaluated the
effectiveness of two optimizations for FACF.

A. Research Questions

The following research questions were considered. All ques-
tions were considered with respect to the Google environment
(see Section V-E for more details about the dataset used).

RQ1: Which algorithm (FACF or Bisect) was more accurate
in identifying culprit commits?

RQ2: What difference do algorithmic tweaks (such as adding
deflaking runs to Bisect) make to accuracy.

RQ3: How efficient is each algorithm as measured in number
of test executions?

RQ4: What difference do algorithmic tweaks (such as adding
deflaking runs to Bisect) make to efficiency.

RQ5: Does flakiness affect culprit finding accuracy and cost?

B. Measuring Culprit Finding Accuracy

To measure the accuracy of the culprit finders we produce
a binary variable (“correct”) which is true if the culprit finder
identified version matched the culprit in the dataset. Accuracy
is then defined as the sample proportion: ACC = # correct/Total.
Culprit finder “A” is judged more accurate than culprit finder
“B” if A’s ACC value is higher than B’s and a statistical
test (described in Section V-D) determines the difference is
significant.

C. Measuring Culprit Finding Cost

We measure cost as the number of test executions performed
by the algorithm. Culprit finder “A” is judged lower cost than
culprit finder “B” if the mean number of test executions is
less than “B” and a statistical test (described in Section V-D)
determines the difference is significant.

D. On Our Usage of Statistical Tests

For answering RQ1 and RQ2, we observe the distribution
per culprit-finding algorithm of whether or not the algorithm
identified the culprit (0 or 1). For answering RQ3 and RQ4,
we observe the distribution per culprit-finding algorithm of the
number of test executions required to complete culprit finding.

We follow the recommendations of McCrum-Gardner [30]
as well as Walpole et al. [31] as to the proper test statistics
for our analysis. Since data points for a specific culprit range
have a correspondence across algorithms, we perform paired
statistical tests when feasible. The analysis is complicated by
the observation that neither the dichotomous distribution of
correctness nor the numerical distribution of number of test ex-
ecutions are normally distributed. Following McCrum-Gardner
we opt to use non-parametric tests. Additionally different tests
are used for accuracy (dichotomous nominal variable) and
number of executions (numerical variable) respectively.

As we have more than 2 groups to consider (10 algorithms),
we initially perform omnibus tests over all algorithms to justify
the existence of statistical significance over all algorithms.
In response to the multiple comparisons problem [31], we
compute the corrected significance bound using the formula
for the family-wise error rate. Our experimental design has
us first conduct the ANOVA significance test to determine
if any of the algorithms differed in performance. Then we
conduct post-hoc testing to determine which algorithm’s per-
formance differed. For each considered question we conduct(
10
2

)
+ 1 significance tests. We have 6 considered questions

which we use significance testing to answer, giving us a total
r = 6

((
10
2

)
+ 1

)
= 276 tests.

Solving for the α in the experiment-wise error rate formula
from Walpole (pg. 529 [31]) with p standing for the probability
of a false rejection of at least one hypothesis in the experiment
gives: α = 1− (1− p)

1
r . Given r = 276 tests and an intended

experiment-wise error rate of p = 0.001, we conservatively
arrive at α = 10−6 after rounding down to control for family-
wise error rate. We use α as our significance level in all tests.

Cochran’s Q Test is used for significance testing of the
accuracy distributions and Friedman’s χ2 Test for number of
executions. Post-hoc testing was conducted with McNemar’s
test and Wilcoxon Signed Rank Test respectively.

E. Evaluation Dataset

For the study we used a subset of the dataset produced
by the production Culprit Verifier (described in Section IV).
The evaluation dataset consists of 13600 test breakages with
their required build flags, search range of versions, and the
verified culprit. The verified culprit may be an indicator that
there was no culprit and detected transition was caused by a
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Fig. 2: Accuracy (left) and Cost (right) of the culprit finding algorithms (see Tables I and II for a description of each algorithmic variant).
For each figure a group wide significance test was first done (p-value in the legend along with number, n, of matched search ranges in
the dataset) and then pair significance tests were conducted to determine which had similar algorithmic performance. Similarly performing
algorithms were grouped together into disjoint sets where all algorithms in the group had non-significant pair-wise differences.
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Fig. 3: Accuracy for Search Ranges without Culprits (aka. Flaky Search Ranges) versus Search Ranges with Culprits.
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Fig. 4: Cost in test executions for Search Ranges without Culprits (aka. Flaky Search Ranges) versus Search Ranges with Culprits.

flake. Approximately 60% of the items had a culprit version
and 40% did not (as these were caused by a flaky failure).

Multiple tests may be broken by the same version. When
looking at unique search ranges, we actually see approximately
twice as many flaky ranges as non-flaky ones. This hints
towards having tighter bounds on which ranges are worth
culprit finding as all of the runs for two-thirds of ranges would
have been better utilized on more deflaking runs if these two
categories are accurately discernable.

TABLE I: VARIANTS OF THE BISECT ALGORITHM STUDIED IN THE
EMPIRICAL EVALUATION.

Bisect Variant Description
Bisect(1) Bisect (Alg. 1) with 1 test execution per version
Bisect(2) Bisect (Alg. 1) with 2 test execution per version
Bisect(4) Bisect (Alg. 1) with 4 test execution per version
Bisect(6) Bisect (Alg. 1) with 6 test execution per version
Bisect(8) Bisect (Alg. 1) with 8 test execution per version



TABLE II: VARIANTS OF THE FACF ALGORITHM STUDIED IN THE
EMPIRICAL EVALUATION.

FACF Variant Description
FACF(all) FACF variant with all improvements enabled
FACF Basic FACF algorithm (see Alg. 2)
FACF(fr=.1) FACF algorithm with a minimum flake rate of 11%
FACF(heur-threshold) FACF using the heuristic thresholds from

Section III-B in Alg. 3
FACF(priors) FACF using a non-uniform prior probability

(see Sec III-C)
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Fig. 5: Cumulative Proportion (y-axis) of Search Ranges with at least
one Test under the given Flake Rate (x-axis).

We therefore examine the overall dataset for discrepancies
between the two categories. For example, flaky ranges have, on
average, 8 tests failing while non-flaky ranges have 224. For
the objective of finding unique real culprits, we are interested
in the minimum flake rate over targets in a range for flaky
and non-flaky ranges, respectively. Fig 5 shows us that, in
fact, 99% of real culprit ranges have targets below a flake rate
of 75%.

F. Results
1) RQ1: Which algorithm (FACF or Bisect) was more

accurate in identifying culprit commits?: All versions of FACF
were more accurate overall than all versions of Bisect (Figure
2a). The difference was significant with a p-value < 10−12,
below the adjusted 10−6 significance level required.

2) RQ2: What difference do algorithmic tweaks (such as
adding deflaking runs to Bisect) make to accuracy?: The
production version of FACF, FACF(all), was most accurate
and significantly different than all other algorithms (Figure
2a). This was followed by FACF(fr=.1) which set the floor
of 10% on the estimated flake rate for tests. The other FACF
variants were equally accurate.

3) RQ3: How efficient is each algorithm as measured in
number of test executions?: Figure 2b shows the most efficient
algorithm was unsurprisingly Bisect(1) which does not attempt
to do any extra executions to deflake test failures. The next
most efficient algorithm was FACF(all) which was also the
most accurate. As can be seen in the boxplot in Figure 2b, the
FACF variants tend to have many more extreme outliers in
their cost distribution than the Bisect variants. This is because
they account for the prior flake rate. An organization may
control their cost by not culprit finding tests which are more
than (for instance) 50% flaky. No such upper bound was
established for this experiment.

4) RQ4: What difference do algorithmic tweaks (such as
adding deflaking runs to Bisect) make to efficiency?: First,
both FACF(all) and FACF(priors) had less cost than the stan-
dard FACF. This indicates that while FACF(priors) does not
improve accuracy it does improve efficiency of the algorithm.
In particular many more culprits were found with just two
builds.

Second, FACF(heur-thresholds) had no significant effect on
cost nor did it show any improvement accuracy. We conclude
that although the mathematical motivation may be sound, in
the Google environment, we cannot validate a benefit to this
optimization at this time.

5) RQ5: Does flakiness affect culprit finding accuracy and
cost?: Figures 3 and 4 show the accuracy and cost of culprit
finding flaky and non-flaky culprits. For search ranges without
a culprit, FACF(all) clearly dominates Bisect in accuracy and
even has a small advantage in cost over Bisect(1).

When there is a culprit, the FACF variants are all more
accurate than the Bisect variants according to the statistical
tests. However, the difference is much less pronounced with
Bisect(1) accuracy ∼96.1% and FACF(all) accuracy ∼97.5%.
In terms of cost, Bisect(1) and Bisect(2) are the most efficient
followed by the FACF variants.

We will note, a production culprit finder cannot know a
priori if a breakage was caused by a flake. It would need
to do deflaking runs to establish that, costing approximately⌈

log(p)/log
(
f̂t

)⌉
where p is your desired confidence level. For

p = 10−4 and f̂ = .2, this amounts to 6 extra runs, which
would significantly increase the cost of bisection. However, as
noted in Section V-E, prior flakiness rates could be used to
prune out a significant portion of flaky ranges (lowering cost)
with a minimal hit to accuracy.

VI. RELATED WORK

A. Culprit Finding

Despite its industrial importance, culprit finding has been
relatively less studied in the literature in comparison to topics
such as Fault Localization [32], [33] (coverage based [34],
[35], [36], [28], [29], [37], information retrieval based [38],
[39], [40], or slicing based [41], [12], [42]), Bug Prediction
[43], [44], [45], Test Selection [46], [47], Test Prioritization
[48], [47] and the SZZ algorithm for identifying bug inducing
commits in the context of research studies [49], [50], [51],
[52]. This is perhaps understandable as the problem only
emerges in environments were it becomes to costly to run
every test at every code submission.

The idea of using a binary search to locate the culprit is
common, but it is not completely clear who invented it first.
The Christian Couder of git bisect wrote a comprehensive
paper on its implementation [7] but indicates there are other
similar tools: “So what are the tools used to fight regressions?
[...] The only specific tools are test suites and tools simi-
lar to git bisect.” The first version of the git bisect

command appears to have been written by Linus Torvalds



in 2005.5 Torvald’s commit message simply states “This is
useful for doing binary searching for problems.” The source
code for the mercurial bisect command hg bisect states
that it was inspired by the git command.6 The Subversion
(SVN) command, svn bisect, also cites the git command as
inspiration.7 Therefore, as far as the authors can tell bisection
for finding culprits appears to have been invented by Torvalds.

The Couder paper [7] cites a GitHub repository for a
program called “BBChop,” which is lightly documented and
appears not entirely completed by a user enigmatically named
Ealdwulf Wuffinga (likely a pseudonym, as that was a name of
the King of East Anglia from 664-713).8 This program claims
to have also implemented a Bayesian search for culprits. We
gladly cede the throne for first invention of applying Bayes
rule to culprit finding to Ealdwulf and note that our invention
was independent of the work in BBChop.

More recently, work has been emerging on the industrial
practice of Culprit Finding. In 2013, Ziftci and Ramavajjala
gave a public talk at the Google Test Automation Conference
in on Culprit Finding at Google [21]. They note, that by 2013
Google has already been using m-ary bisection based culprit
finding for “small” and “medium” tests. They then give a
preview of an approach elaborated on in Ziftci and Reardon’s
2017 paper [22] for culprit finding integration tests where test
executions take a long time to run. The authors propose a
suspiciousness metric based on the minimum build dependence
distance and conduct a case study on the efficacy of using such
a metric to surface potential culprits to developers. We utilize a
similar build dependence distance as input to construct a prior
probability (see Section III-C) in this work but do not directly
surface the metric to our end users. Finally, for ground truth
they rely on the developers to report what the culprit version
is. In contrast, the empirical evaluation we present in this new
work is fully automated and does not rely on developers.

In 2017, Saha and Gligoric [53] proposed accelerating the
traditional bisect algorithm via Test Selection techniques. They
use Coverage Based Test Selection [54], [55] to choose which
commits are most likely to affect the test results at the failing
commit. This technique can be viewed as fine grained, dy-
namic version of the static build dependence selection strategy
we employ at Google.

In 2019, Najafi et al. [27] looked at a similar problem to
the traditional culprit finding problem we examine here. In
their scenario, there is a submission queue that queues up
commits to integrate into the main development branch. It
batches these waiting commits and tests them together. If a test
fails, they need to culprit find to determine the culprit commit.
The authors evaluate using a ML-driven risk based batching
approach. In 2022, the same research group re-evaluated the

5https://github.com/git/git/commit/8b3a1e056f2107deedfdada86046971c9a
d7bb87

6https://www.mercurial-scm.org/repo/hg/file/52464a20add0/mercurial/hbi
sect.py, https://www.mercurial-scm.org/repo/hg/rev/a7678cbd7c28

7https://metacpan.org/release/INFINOID/App-SVN-Bisect-1.1/source/RE
ADME

8https://github.com/Ealdwulf/bbchop

2019 paper on an open source dataset in Beheshtian et al.’s
2022 paper [56]. They found that in the new environment
the risk based batching didn’t do as well as a new and
improved combinatorics based batching scheme for identifying
the culprit commits.

James Keenan gave a presentation in 2019 at the Perl
Conference in which he presented a concept, multisection, for
dealing with multiple bugs in the same search range [57].
Ideally, industrial culprit finders would automatically detect
that there are multiple distinct bug inducing commits.

In 2021, two papers looked at using coverage based data for
accelerating bug localization. An and Yoo [58] used coverage
data to accelerate both bisection and SZZ [49] and found
significant speedups. Wen et al. [59] combined traditional Cov-
erage Based Statistical Fault Localization [34] with historical
information to create a new suspiciousness score [60]. This
fault localization method could be used in a culprit finding
context by using the line rankings to rank the commits.

Finally, in 2022 Frolin Ocariza [61] published a paper on
bisecting performance regressions. There are strong connec-
tions between a flaky test and a performance regression as a
performance regression may not happen 100% of the time.
Furthermore, the “baseline” version may randomly have poor
performance due to environmental or other factors. Ocariza
also arrives at a probabilistic approach, using a Bayesian
model to determine whether a run at a particular version is
exhibiting the performance regression or not. While mathe-
matically related to our work here and complementary, the
approach is distinct. The authors note that their technique can
be combined with a Noisy Binary Search citing Karp [62] or
with a multisection search citing Keenan [57].

B. Noisy Binary Search

There is a vast literature on Rényi-Ulam games and Noisy
Searching problems (doubly so when considering their con-
nection to error correcting codes)! We direct readers to the
Pelc survey [18] as a starting point. We will highlight a few
articles here. First and foremost, the Ben Or and Hassidim
paper [20] from 2008 most clearly explains the problem in
terms of a Bayesian inference, which is the formulation we
use here. Second, Waeber et al. in 2013 [63] discuss the
theoretical foundations of these probabilistic bisection algo-
rithms. Finally, according to Waeber, Horstein first described
this algorithm in the context of error correcting codes in 1963
[64].

VII. CONCLUSION

Flake Aware Culprit Finding (FACF) is both accurate,
efficient, and able to flexibly incorporate prior information on
the location of a culprit. A large scale empirical study on
real test and build breakages found FACF to be significantly
more effective than a traditional bisection search while not
increasing cost over a deflaked bisection.

https://github.com/git/git/commit/8b3a1e056f2107deedfdada86046971c9ad7bb87
https://github.com/git/git/commit/8b3a1e056f2107deedfdada86046971c9ad7bb87
https://www.mercurial-scm.org/repo/hg/file/52464a20add0/mercurial/hbisect.py
https://www.mercurial-scm.org/repo/hg/file/52464a20add0/mercurial/hbisect.py
https://www.mercurial-scm.org/repo/hg/rev/a7678cbd7c28
https://metacpan.org/release/INFINOID/App-SVN-Bisect-1.1/source/README
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