Behavioral Fault Localization by Sampling
Suspicious Dynamic Control Flow Subgraphs

Tim A. D. Henderson and Andy Podgurski
Dept. of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, Ohio, USA 44106
tadh@case.edu, podgurski@case.edu

Abstract—We present a new algorithm, Score Weighted Ran-
dom Walks (SWRW), for behavioral fault localization. Behavioral
fault localization localizes faults (bugs) in programs to a group of
interacting program elements such as basic blocks or functions.
SWRW samples suspicious (or discriminative) subgraphs from
basic-block level dynamic control flow graphs collected during
the execution of passing and failing tests. The suspiciousness
of a subgraph may be measured by any one of a family of
new metrics adapted from probabilistic formulations of existing
coverage-based statistical fault localization metrics. We con-
ducted an empirical evaluation of SWRW with nine subgraph-
suspiciousness measures on five real-world subject programs.
The results indicate that SWRW outperforms previous fault
localization techniques based on discriminative subgraph mining.

I. INTRODUCTION

Automated fault localization techniques have been developed
to help programmers locate software faults (bugs) responsible
for observed software failures. Many of these techniques are
statistical in nature (e.g., [1]-[3]). They employ statistical
measures of the association, if any, between the occurrence
of failures and the execution of particular program elements
like statements or conditional branches. The program elements
that are most strongly associated with failures are identified
as “suspicious”, so that developers can examine them to see
if they are faulty. The association measures that are used
are often called suspiciousness metrics [4]. Such statistical
fault localization (SFL) techniques typically require execution
profiles (or spectra) and PASS/FAIL labels for a set of both
passing and failing program runs. Each profile entry charac-
terizes the execution of a particular program element during
a run. For example, a statement-coverage profile for a run
indicates which statements were executed at least once. The
profiles are collected with program instrumentation, while the
labels are typically supplied by software testers or end users.

Kochhar et al. [5] recently surveyed 386 software engi-
neering practitioners about their expectations for automated
fault localization. While practitioners indicated their prefer-
ence for very accurate algorithms, over 85% of respondents
also indicated their preference for tools which help them
understand the output of fault localization algorithms. This
is an important finding as most statistical approaches do not
provide an explanation of their results. The SFL techniques
often simply compute suspiciousness measures and rank the
program elements accordingly. These rankings may be helpful,

Passing Passing

Test(s) Instrumented AT

Failing Program Failing Suspicious
Test(s) Flow Graphs Behaviors

Fig. 1: Process for localizing faults with discriminative graph mining.

but without more information programmers could overlook the
faulty element even when it is ranked highly.

Suspicious-Behavior Based Fault Localization (SBBFL) is a
statistical fault localization technique that aids the programmer
in understanding suspiciousness scores by providing a con-
text of interacting elements.! Instead of implicating a single
element, SBBFL implicates a larger runtime behavior (see
process in Figure 1). The implicated control flow paths (or
subgraphs) may help the programmer understand the nature
of a bug [7].

We present a new algorithm, Score-Weighted Random Walks
(SWRW), for behavioral fault-localization. SWRW belongs
to a family of discriminative graph-mining algorithms that
have previously been used for behavioral fault localization
[3], [7]-[15]. Graph mining is very powerful in principle but
algorithms must make trade-offs to address the challenging
combinatorics of the graph mining problem. Our new al-
gorithm, SWRW, mitigates the combinatorics by randomly
sampling “suspicious” subgraphs from dynamic control flow
graphs. During the sampling process, the most suspicious
subgraphs (as judged by a suitable suspiciousness metric) are
favored for selection. Unlike previous algorithms, SWRW can
be used with a wide variety of suspiciousness metrics —
which allows it to use better metrics than available to previous
work. Even when using the same metric as similar algorithms,
SWRW localizes faults more accurately than they do.
Summary of Contributions

1) A new behavioral fault localization algorithm, SWRW,

that samples suspicious subgraphs from dynamic control
flow graphs. Unlike similar algorithms, SWRW can be
used with a variety of suspiciousness metrics.

2) New generalizations of existing suspiciousness metrics

that allow them to be applied to behaviors represented
by subgraphs of dynamic control flow graphs.

'Dynamic slicing [6] also provides such a context, but does not in itself
involve suspiciousness measures.

entry

1

package main

package main
import "dgruntime"
func main() {

func maip() {

for i :=10; i >= -2; i-- { func main()

func fib(x int) int

defer func() { dgruntime.Shutdown() }()
dgruntime.EnterFunc("main")

defer func() { dgruntime.ExitFunc("main") }()

for i := 10; dgruntime.EnterBlkFromCond(2) && i >= -2; i-- {

println(fib(i)) bl

i:= 10|

i-- ‘ X < 0‘

§

}

b7

dgruntime.EnterBlk(4)

i++ println(fib(i))

1 b3

b2

11

IS

}
func fib(x int) int {
dgruntime.EnterFunc("fib")

return 0 ‘

defer func() { dgruntime.ExitFunc("fib") }()
if x <0 {
dgruntime.EnterBlk(2)

1313

b4
println(fib(i))

} 1 1

return 0

1
dgruntime.EnterBlk(3)
p, c:=0,1
for i := 0; dgruntime.EnterBlkFromCond(4) && i < x; i++ {
dgruntime.EnterBlk(6)
n:i=p+c

p,c=c¢, n

I3
dgruntime.EnterBlk(5)
return c

}

Fig. 2: An example dynamic control flow graph (DCFG) for a Go program (listing on left) that computes elements from the Fibonacci
sequence. Each vertex is a basic block with a basic block identifer (e.g. b1) that, in conjunction with the name of the containing function,
serves as the label for the block (e.g. main:b1). Each edge shows the number of traversals taken during the execution of the program. Note
that the loop update blocks (main:b3 and fib:b7) will not be in the profiles because Dynagrok instruments the Go source code and profiling
instructions cannot be syntactically inserted in those locations. The instrumented program is shown on the right.

3) An empirical study whose results suggest that SWRW is
more accurate than similar algorithms.

4) Dynagrok, a new instrumentation, mutation, and analysis
tool for the Go programming language.

II. DYNAGROK: A NEW PROFILING TOOL

All Coverage-Based Statistical Fault Localization (CBSFL)
techniques use coverage profiles to gather information on how
software behaved when executed on a set of test inputs. A
coverage profile typically contains an entry for each program
element of a given kind (e.g., statement, basic block, branch,
or function), which records whether (and possibly how many
times) the element was executed during the corresponding
program run. The profiles and PASS/FAIL labels for all tests
are then used to compute a statistical suspiciousness score for
each program element.

The process of gathering the coverage information from
running programs is called profiling and there are many
different varieties of profilers and profiling techniques avail-
able. Coverage profiling is a simple and widely implemented
technique, which is why it has been widely used by the fault
localization community. Another technique is tracing, which
logs the sequence of program locations as they are executed.
The traces provide detailed information on the behavior of the
program but could grow to be very large for long running
programs. This paper uses execution flow profiling which
computes the dynamic interprocedural control flow graph of
a program’s execution. This provides some of the benefits of
tracing without recording an excessive amount of data.

To capture execution flow profiles we developed Dynagrok,
a new analysis, instrumentation and mutation platform for
the Go programming language.” Go is a newer language
(2009) from Google that has been seeing increasing adop-
tion in industry. It has been adopted for web programming,
systems programming, “DevOps,” network programing, and

Zhttps://github.com/timtadh/dynagrok

databases.®> Dynagrok builds upon the abstract syntax tree
(AST) representation provided by the Go standard library.

Dynagrok collects profiles by inserting instrumentation
into the AST of the subject program. The profiles currently
collected are dynamic control flow graphs (DCFGs) whose
vertices represent basic blocks. A basic block is a sequence of
program operations that can only be entered at the start of the
sequence and can only be exited after the last operation in the
sequence [16]. A basic-block level control flow graph (CFG)
is a directed labeled graph g = (V, E,1) comprised of a finite
set of vertices V, a set of edges £ C V x V, and a labeling
function | mapping vertices and edges to labels. Each vertex
v € V represents a basic block of the program. Each edge
(u,v) € E represents a transition in program execution from
block w to block v. The labeling function [labels the basic
blocks with a unique identifier (e.g. function-name:block-id),
which is consistently applied across multiple executions but is
never repeated in the same execution.

Figure 2 shows an example DCFG collected by Dynagrok
for a simple program that computes terms of the Fibonacci
sequence. To collect such graphs Dynagrok parses the program
into an AST using Go’s standard library. Dynagrok then uses a
custom control flow analysis to build static control flow graphs.
Each basic block holds pointers to the statements inside of
the AST. The blocks also have a pointer to the enclosing
lexical block in the AST. Using this information, Dynagrok
inserts profiling instructions into the AST at the beginning of
each basic block. The instructions inserted by Dynagrok use
its dgruntime library to track the control flow of each thread
(which is called a goroutine in Go). When the program shuts
down (either normally or abnormally) the dgruntime library
merges the flow graphs from all the threads together and writes
out the result.

3tiobe.com/tiobe-index/, blog.golang.org/survey2016-results

ITII. FROM SUSPICIOUS LOCATIONS TO SUSPICIOUS
BEHAVIORS

Before explaining our notion of a suspicious behavior we
will review the concept of suspicious statements, blocks, or
other locations in a program. There is a large body of work
on coverage based statistical (also called spectrum-based) fault
localization (CBSFL) (e.g., [1], [17]-[26]), which identifies
suspicious program locations from code coverage profiles
collected from passing and failing program runs. All of this
work tries to assess the suspiciousness of a particular program
element based on a statistical measure of the association be-
tween coverage of the element and the occurrence of program
failure.

A simple measure of the suspiciousness of a program
location [is the probability Pr[F|l] that the program will
fail given execution of the location [[26]. Let n be the total
number of executions, f be the number of executions that
failed, p be the number of executions that did not fail, n;
be the total number of times [was executed, f; be the total
number of times [was executed and the program failed, and p;
be the total number of times [was executed and the program
did not fail. Then we can define an estimator for Pr[F|l] in
terms of these counts by:

Pr[Fny L&
Pr[F|l] = rf[)r[l]]z - :1{% (1)

Other measures have been developed to assess the suspi-
ciousness of program locations but most can be expressed
using combinations of simple estimators of just four proba-
bilities: the probability of the program failing Pr[F] = %,
the probability of the program not failing (test passing)
Pr[P] ~ 2, the probability of the execution of a location I
when the program fails Pr[F NI] =~ J:—Ll, and the probability
of the execution of a location [when the program does not
fail Pr[P Ni] ~ 2. For example, using these estimators the
popular Ochiai metric [18] can be expressed [20] as:

Och ~ /Pr[F|l] x Pr[l|F]

B Pr[F NI Pr[F NI
_\/Pr[FmHPr[Pmu>< Pr[F] @

Each simple program statement or instruction is contained
within a basic block (see Figure 2). Since the execution
of one operation of a basic block implies the execution of
the whole block (under most circumstances) all operations
in a block are equally suspicious under any coverage-based
statistical suspiciousness measure. Thus, it suffices to compute
the suspiciousness for a block as a whole rather than doing so
separately for each statement or instruction in the block.

One method of measuring program behavior is through
flow graph profiling (e.g., as performed by Dynagrok). In this
paper a “suspicious behavior” is a subgraph h of a dynamic
control flow graph (DCFG) g such that execution of h is
statistically associated with program failure. The framework
outlined above will be extended from particular basic blocks
to subgraphs of flow graphs. This allows nearly any CBSFL

TABLE I: PROBABILITY ESTIMATORS ADAPTED TO SUBGRAPHS
OF BASIC BLOCK FLOW GRAPHS.
Probability Estimator Formula
Pi[F] !
n
Pr[P) b
n
Pr[F N h] H9:9€ FAhC g}
n
I;r[Pﬁh} ZseEh Pr[Pm€]+Zvevh Pr[P N v]
|En| + | Val
Pr{n] Pr[F N h] 4 Pr[P N A

TABLE II: A REPRESENTATIVE SET OF SUSPICIOUSNESS METRICS
FOR STATISTICAL FAULT LOCALIZATION [24] DEFINED IN TERMS
OF PROBABILITY ESTIMATORS [26].

Suspiciousness Metric Formula
Precision M
Pr[h]
Fl Pr(h] Pr[Fnh]
Pr[F]+Pr[h] Pr[h]
Ochiai PeF 0 A Pe[F O A]
Pr[F] Pr[h]
Jaccard Pr[F N h]

Pr[F]+Pr[PNh]
|:Pr [F N b logQ(Pr[Fﬂ h])

Pr[h] Pr[h]
o ' P[P N A Pr[P N A
Information Gain R 7] 10g2< Pr [h] >}

— [Pr[F] logy(Pr [FT]) + Pr[P] logy(Pr [P])]

Pr[F N h] — Pr[F]Pr[h]
€+ Pr[h] — (Pr[h])?

Associational Risk

Contrast Pr[F'Nh] —Pr[PNhA]

Pr[F Nh]

Relative-Precision — Pr[F]
Pr [h]

. Pr [h] Pr[F Nh]
Relative-F1 Pr [F] + Pr [7] (Pr [7] —Pr [F]>
Relative-Ochiai \/ ;r[[?] (%{;}h} —Pr [F])

Pr[F NA]

Relative-Jaccard — Pr[F]

Pr[F] 4 Pr[P N A

suspiciousness measure to be re-used as a suspiciousness
measure for flow graph fragments.

As before, the probability of program failure is Pr[F] ~
and the probability of a program not failing is Pr[P] ~
However, our other two “building block™ estimators will need
to be modified for use with subgraphs. Let F be the set of
DCFGs collected from failing executions and let P be the

f

n
D
"

set from non-failing (passing) executions. Let g be a dynamic
control flow graph, and let h be a subgraph of g, denoted h C
g. We say that the subgraph h is “covered” by any program
execution with DCFG g.

Equation 2 defined the Ochiai metric in terms of the
probabilities Pr[F' N [] (the probability that the program fails
and the location [is executed) and Pr[P N!] (the probability
that the program does not fail and the location [is executed).
Ochiai can be adapted for use with subgraphs by replacing
these probabilities with analogous ones: Pr[F N h] (the prob-
ability that the program fails and subgraph h is covered) and
Pr [P N h] (the probability that the program does not fail and
subgraph h is covered). Estimators for these probabilities can
be defined as:

H{g:9€ FARC g}

Pr[F Nk ~ g 3)
{g:9€ PAKL g}

Pr[PNh|~
n

“4)

Ochiai can then be redefined for suspicious subgraphs (behav-
iors) as:

N Pr[F N h)
Ochrp(h) ~ \/Pr [FOA + PPNk

The other suspiciousness measures discussed in a recent paper
by Sun and Podgurski [26] can be adapted in a similar fashion
(Table II adapts a representative set of the better performing
metrics).

Many suspicious behaviors never appear in full among the
dynamic flow graphs of the non-failing (passing) executions.
However, portions of these behaviors do appear. The estimator
above for Pr[P N h] will always estimate the probability of
such subgraphs as 0. This seems to be an underestimate
for subgraphs for which a majority of their vertices and
edges are covered by non-failing executions. An alternative
(and efficiently computable) estimator Pr[P N h] averages the
probability estimates for each edge and vertex:

B H{g:9€PAnee Ey}|

Pr[F N h)
Pr[F)

®)

Pr[P e = -
};r[va}:Hg:geP/\veVg}\
n
_ S, PPN+, oy Pr[P N
Pr[PNh] = u U Vh 6
[] |En| + [Va| ©

This new estimator gives “partial credit” to a graph h which
has substructures which are covered by passing executions.

Table I summarizes the definitions of the probability estima-
tors used throughout the rest of this chapter. Table II provides
the formulas for a representative set of suspiciousness metrics
adapted for use with DCFG subgraphs.

IV. BACKGROUND: MINING SUSPICIOUS BEHAVIORS

The goal of discriminative or suspicious pattern mining
is to extract from “positive” and a “negative” datasets pat-
terns which distinguish between the two sets. In Suspicious-
Behavior-Based Fault Localization (SBBFL) the datasets are

sets of Dynamic Control Flow Graphs (DCFGs) collected from
test executions. One set F contains the DCFGs collected from
executions that failed. The second set P contains the DCFGs
from passing (or non-failing) executions of the program.

Because the datasets F and P are sets of graphs, the dis-
tinguishing patterns will be graphs. In SBBFL, the identified
patterns are all subgraphs of the graphs collected from failing
executions. The extracted patterns are statistically correlated
with program failure, as in Coverage-Based Statistical Fault
Localization (CBSFL). Some of the options for measuring
the correlation between program failure and the presence of a
subgraph in a DCFG were discussed in Section III.

Finding these suspicious subgraphs, is an application of
discriminative (or significant) subgraph mining as solved by
the Branch-And-Bound (B&B) family of algorithms [27]-
[30]. In significant subgraph mining the goal is to find the
most significant subgraph(s) according to some measure of
significance [31]. If there are multiple classes of graphs in the
database (e.g. “positive” and “negative” graphs), significance
measures such as Information Gain [7], [30] are used to guide
the algorithm to find subgraphs that discriminate between F
and P.

Previous SBBFL studies [7], [13] used algorithms in the
B&B family [27] (such as LEAP Search [30]) to mine the
top-k suspicious subgraphs.

Definition 1 (Top-k Suspicious Subgraph Mining). Given
an integer k > 0; F, the set of DCFGs collected from
failing program executions; P, the set of DCFGs from passing
executions; and a suspiciousness measure s: find a set of
subgraphs H such that |H| = k and), . ;; <(h) is maximized.

In principle the suspiciousness measure ¢ in the definition
above could use arbitrary information from a subgraph A and
the sets F and P. However, in symmetry with the discussion in
Section III and with previous work [30] we will only consider
measures defined in terms of the probability estimators in
Table 1. Since for any given sets F and P the estimators Pr[F]
and Pr[P] are fixed, ¢ can be viewed as a function of Pr[F'NA]
and Pr[P N h]: ¢(Pr[F N A],Pr[P N A]) — K.

The B&B algorithms solve the Top-k Suspicious Subgraph
Mining problem by enumerating subgraphs of graphs in the
set F. To prune portions of the search space they compute a
mathematical upper bound ¢ on the suspiciousness measure .
Here, we will focus on the computation of the upper bound
on the suspiciousness (or significance) score for all potential
supergraphs of any particular subgraph h. (A more detailed
description of the algorithm is given in Section VII.) One such
bound for ¢ (which improves upon the upper bound in [30])
can be constructed using the following two facts:

1) A user may specify a subgraph h appears among the
graphs in F at least fp, times. Then f:.m becomes a
lower bound on Pr[F N A. ‘

2) The user may specify a maximum number of edges | E|

max

allowed in a subgraph, giving a lower bound on Pr[PNAh):

Ycery PPN e + 3 oy, PrP N
21|, +1

Pr[P N Almin =

These facts can be used to derive a lower bound on l;r[P N h.
Combining the two lower bounds yields an upper bound ¢ on

¢ for the supergraphs of h:
~ 7
s(+,Pr[P N A)) } @

¢ = max
Smin?

In order for Equation 7 to be used as bound within a
B&B algorithm, ¢ must satisfy a technical property (Equation
5 in the LEAP Search paper [30]) that we will call the
Discriminative Velocity Property (DVP). For a metric ¢ to
satisfy DVP its partial derivatives with respect to Pr[F N h]
and Pr[P N h] must meet certain requirements. This ensures
the metric ¢ is increasing in the correct circumstances. Due to
space limitations and the complexity of the property we will
not go into the mathematical details — see the LEAP Search
paper [30].

Table III shows that, of the metrics in Table II, only
Information Gain satisfies DVP. Because satisfaction of DVP
is a requirement for using a metric with a B&B algorithm,
of the metrics shown in Table II only Information Gain can
be used in a B&B algorithm. As we will see in the Empirical
Evaluation in Section VI, this is a major limitation of the B&B
algorithms because Information Gain turns out to be one of
three metrics which perform markedly worse than the other
metrics considered. The next section develops a solution to
this problem in the form of a new type of algorithm which
does not rely on an explicit enumeration of the search space.

<(Pr[F N A], P[P N Almin),

V. SAMPLING SUSPICIOUS BEHAVIORS

Branch-And-Bound (B&B) algorithms have four drawbacks
when applied to automatic fault localization:

1) Suspiciousness metrics must satisfy DVP, restricting

B&B to metrics such as Information Gain (see Table III).
2) B&B algorithms enumerate the subgraphs of graphs in F
— a scalability bottleneck [31].

3) The user must specify the maximum number of edges
allowed in a subgraph (from Eq. 7).

4) The user must specify the maximum number of subgraphs
to mine (from Def. 1).

In order to solve the aforementioned problems with the
Branch-And-Bound framework, we have developed a new
algorithm, called Score Weighted Random Walks (SWRW),
for finding suspicious, significant, or discriminative subgraphs.
The new method approximates Branch-And-Bound’s output
by sampling the search space. The sampling is weighted by
the suspiciousness scores, which (heuristically) minimizes the
error from Branch-And-Bound’s output. A sampling approach
makes it easy to trade-off computation time with accuracy by
adjusting the sample size.

The new method, unlike the B&B algorithms, does not
require that suspiciousness metrics satisfy DVP — which most

metrics do not satisfy. Instead, metrics must satisfy a new,
less restrictive property we call the Inverse Velocity Property
(IVP). As shown in Table III, all but two of the suspiciousness
metrics shown in Table II satisfy IVP.

Definition 2 (Inverse Velocity Property). Let ¢ be a suspi-
ciousness score, © = Pr[FNh|, and y = Pr[PNh|. The
Inverse Velocity Property is satisfied if:

S s

(x e (0,1]Ay €[0,1]) = (&’c >0A 9y <0)

IVP requires a suspiciousness metric to increase as the support
of a subgraph h either increases in the set F of graphs from
failing executions or decreases in the set P of graphs from
passing executions. It also requires the metric to decrease when
support for h falls in F or increases in P. This follows the
anti-monotonic structure of subgraph mining [31]:

hCh = ¢(h) <s(h)

If SWRW is run using a metric that does not satisfy IVP, it
will return results that are incorrect — either missing graphs
it should have found or including graphs it should not have
found. Like DVP for Branch-And-Bound, IVP is required for
the output of SWRW to be correct.

Suspiciousness metrics which satisfy IVP induce a (newly
defined) suspicious subgraph lattice on the subgraphs of the
graphs in F. Figure 3 shows an example suspicious subgraph
lattice for a small undirected graph dataset. SWRW samples
suspicious subgraphs from the lattice via a weighted forward
random walk. The suspicious subgraph lattice is a graph whose
nodes represent subgraphs of the dataset. It is a subgraph of
the connected subgraph lattice [32].

Definition 3 (Connected Subgraph Lattice of G). The sub-
graph relation - C - induces the Connected Subgraph Lattice
Lg representing all the possible ways of constructing a graph
G € G from the empty subgraph by adding one edge at a
time. Lg is a digraph where each vertex u represents a unique
connected (ignoring edge direction) subgraph of some G € G.
There is an edge from u to v in Lg if adding some edge € to
u creates a subgraph u + € isomorphic to v, v = u + €.

Definition 4 (Suspicious Subgraph Lattice). The subgraph
relation - C - and a suspiciousness measure s satisfying IVP
induce a Suspicious Subgraph Lattice ¢-Lg. The lattice ¢-L¢
is a connected subgraph of the connected subgraph lattice Lg
rooted at the root of Lg. Let the empty subgraph hg be in
Ve.r as the root node of s-L¢ (it is also the root of Lg). If an
edge (u,v) € Ec.r, thenvisin Vi.r. An edge (u,v) € Er,
is an edge in E. ., if and only if:

Pr[F N

s(u) <s()Ve(u) =c¢v) N ———— =1

Vece N
" Yok Prlo]

Listings 1 and 2 show the new algorithm, Score Weighted
Random Walk, for finding suspicious behaviors by sampling
maximal suspicious subgraphs from the suspicious subgraph
lattice ¢-Lg. The algorithm is built around a core function
(swrw in Listing 1). The algorithm takes a random walk on an

absorbing Markov chain [33], [34] built from the suspicious
subgraph lattice ¢-L5. A Markov chain is absorbing if an
absorbing state is reachable from every state, where a state is
absorbing if it cannot be left once it is entered. The random
walk taken by SWRW is weighted by the suspiciousness scores
¢ of the subgraphs in the lattice, which causes it to visit the
more suspicious subgraphs more frequently. When the walk
reaches an absorbing state the graph represented by the state
is sampled.

The function swrw in Listing 1 simulates a Markov process
starting at some state in the chain (start) and transitioning
until it is absorbed at an absorbing state. The absorbing state,
which is a suspicious subgraph, is then returned as the sample.
At each step in the simulation there are four sub-steps. The first
is to check for a random restart of the walk. The second sub-
step computes the supergraphs of the graph cur that represents
the current state of the Markov chain. The next sub-step filters

/5

o 23 =153 [[et.oy=1][et. 23)= 113
@)
my/ \an am/ \am
/
F P (.29 =79 || o1, 5/9 =49 | [(1, 29)= 79
o—e
\
1”2 \112
\
? e 13 =23 | [ol 13)=273
v
I\ /l
o1, 5/18) = 13/18

(a) Dataset of graphs (b) Suspicious subgraph lattice

Fig. 3: Example suspicious subgraph lattice constructed using the
Contrast suspiciousness metric (see Table II). The colors stand in
for labels in this simple example. In each lattice node (the boxes)
the suspiciousness scores are shown (“c” stands for Contrast). On
the lattice edges (edges between the boxes) the forward transition
probabilities are shown.

TABLE III: DISCRIMINATIVE VELOCITY PROPERTY (DVP) (EQ.
5 IN [30]) AND INVERSE VELOCITY PROPERTY (IVP) (DEF. 2)
SATISIFACTION FOR EACH SUSPCIOUSNESS METRIC IN TABLE II.

[Suspiciousness Metric | Satisfies DVP | Satisfies IVP_|
Precision
F1
Ochiai
Jaccard

Information Gain v
Associational Risk
Contrast

Relative-Precision
Relative-F1
Relative-Ochiai
Relative-Jaccard v

ANENIENERENIENENENEN

Note: Satisfaction was checked using Mathematica for most measures but had
to be checked by hand for Relative-Ochiai and Information Gain. Information
Gain was previously shown to satisfy DVP [7], [30] and our analysis
confirmed this result. None of the other metrics satisfy DVP.

the supergraphs such that only those in V., are kept. Finally,
the function weighted sample is used to select the next state for
the Markov process to transition to.

To collect multiple samples from the suspicious subgraph
lattice, k random walks could be taken. This approach is shown
in function k_walks in Listing 2. Each walk starts from the
bottom of the lattice and, using the supplied walk function (e.g.

1 | # param F: The flow graphs collected from failing executions
2 |# param P: The flow graphs collected from passing executions
3 | # param score: The suspicousness measure

4 | # param min_F sup: The minimum number of graphs in the set F
5 |# that a suspicious graph must appear in

6 |# param start: the graph in the suspicious subgraph lattice
7| # to start the walk from.

8 |# returns a subgraph of F randomly sampled from the

9 | # suspicious subgraph lattice induced by P and score.

10 |def swrw(F, P, score, min F sup, start):

11 cur = start

12 prev = cur

13 while cur is not None:

14 # At each step in the walk, a random restart occurs
15 # with probability proportional to the maximum length
16 # of the walk.

17 if random.random() < 1.0/MAX EDGES:

18 cur = start; prev = cur

19 continue
20 # Compute the direct supergraphs of the current
21 # graph
22 supers = extend with one_edge(F, P, cur)
23 # Filter out graphs not in the suspicious subgraph
2 # lattice
25 supers = filter supergraphs(F, P, min F sup, score,
26 cur, supers)
27 # Randomly select a supergraph to be the next graph
28 # in the walk, favoring those with higher
29 # suspiciousness.

30 prev = cur

31 cur = weighted sample(score, supers)

32 return prev

33

34 |# Filters out graphs in supers that are not in the

35 |# suspicious subgraph lattice

36 |# param h: the current subgraph (which is in the SSL)

37 | # param supers: supergraphs of h

38 | # returns a subset of supers

39 |def filter supergraphs(F, P, min_F sup, score, h, supers):
40 allowed = list()

41 for sg in supers:

42 precision = Pr(F, sg)/(Pr(F, sg) + Pr(P, sg))
43 if score(sg) == score(h) and precision == 1:
44 allowed.append(sg)

45 elif score(sg) > score(h):

46 allowed.append(sg)

47 return allowed

48

49 |# Using the score to weight the graphs sample one graph

50 |# from graphs

51 |# param score: the weighting score

52 | # param graphs: a list of graphs

53 | # returns one graph from graphs or None if graphs was empty
54 | def weighted sample(score, graphs):

55 if len(graphs) <= 0:

56 return None

57 if len(graphs) == 1:

58 return graphs[0]

59 min weight = min(score(g) for g in graphs)

60 shift = max(0, -min weight)

61 weights = [score(g) + shift + le-8 ## ensure > 0
62 for g in graphs]

63 total = sum(weights)

64 i=0

65 r = total * random.random()

66 while i < len(weights) - 1 and r > weights[i]:
67 r -= weights[i]

68 i+=1

69 return i

Listing 1: Python psuedocode for the new SWRW algorithm.

swrw), samples a suspicious subgraph from the lattice. This
approach begs the question of how to choose an appropriate
value for k.

The function walk top vertices in Listing 2 provides an
answer. Instead of taking k walks starting from the root node,
it takes walks starting from a percentage p of subgraphs
representing single vertices — suspicious locations — in the
graphs in F. The function orders the subgraphs in decreasing
order from from most suspicious to least suspicious. This
ensures, by the Inverse Velocity Property, that SWRW starts
from vertices of ¢-L that are likely to lead to the most
suspicious subgraphs.

VI. EMPIRICAL EVALUATION

We empirically evaluated SWRW’s fault localization perfor-
mance in terms of accuracy and cost. SWRW was compared to
a very good previously proposed behavioral fault localization
approach [7] that used LEAP Search [30] — the fastest known
significant subgraph mining algorithm [31]. The following
questions were considered:

1) Which suspiciousness metric (of those in Table II) pro-
vides the most accurate fault localization? Do the alter-
native suspiciousness metrics provide better fault local-
ization performance than Information Gain? Variants of
Information Gain predominate in past work on behavioral
fault localization [7], [9], [10], [12], [13].

2) Comparing SWRW to Branch-And-Bound and sLeap
(both of which require the Information Gain metric),

1 |# param F: The flow graphs collected from failing executions
2 |# param P: The flow graphs collected from passing executions
3 | # param score: The suspicousness measure

4 | # param min_F _sup: The minimum number of graphs in the set F
5 |# that a suspicious graph must appear in

6 |# param k: the number of walks to take

7 |# returns a set of at most k subgraphs

8 |def k walks(F, P, score, min F sup, k):

9 return {

10 swrw(F, P, score, min_F sup, F.empty subgraph())

11 for _ in xrange(k)

12 }

14 | # param F: The flow graphs collected from failing executions
15 | # param P: The flow graphs collected from passing executions
16 |# param score: The suspicousness measure

17 |# param min_F sup: The minimum number of graphs in the set F
18 | # that a suspicious graph must appear in

19 |# param p: the percentage of the top scoring vertices to

20 |# start walks from

21 | # param w: the number of walks to take from each vertex

22 | # returns a set of suspicious subgraphs

23 | def walk top vertices(F, P, score, min _F sup, p, w):

24 # Sort the unique vertices in F by their scores.

25 vertices = F.unique vertices()

26 vertices.sort(key=lambda v: score(v))

27 # Take walks starting from a percentage p of the

28 # vertices, starting with the most suspicious vertices.
29 subgraphs = set()

30 for i, v in enumerate(vertices):

31 if i >= p * len(vertices):

32 break

33 # Take w walks from each vertex

34 for _ in xrange(w):

35 subgraphs.add(swrw(F, P, score, min_F sup, v))
36 return subgraphs

Listing 2: Python psuedocode for collecting multiple subgraphs using
SWRW.

which algorithm provides the best fault localization per-
formance?

A. Methodology

A new dataset of five real world programs with injected
mutation faults was created. The programs are all written in
the Go programming language. Dynagrok (see Section II) was
used to inject the mutations and instrumentation into them. The
injected mutations were all branch condition mutations which
flip the condition (ex. if true — if false). Such mutations
are sufficient for the purposes of this study, because the
resulting faults are favorable to localization by coverage based
fault localization techniques in general, including all of the
techniques considered in this paper. The mutations created do
not favor any techniques being compared over any of the other
techniques.

While the bugs used in the study were exclusively randomly
inserted mutation faults the fests were real test cases. For
the 4 large programs we used either real world operational
inputs sampled from the internet (for the HTML parser and
the Markdown processor) or from the included integration tests
provided by the library developers (for the Go compiler and
the Javascript interpreter). For the last and smallest program
(an AVL tree) we used randomly generated tests that were se-
quences of AVL tree operations (Put, Has, Get, and Remove).
Table IV summarizes the subject programs used in the study.

To assess the performance of Suspicious-Behavior Based
Fault Localization, we used a fault rank cost measure similar
to those used in previous SBBFL studies [7], [8], [13] and
analogous to a measure used in CBSFL studies [26]. The
behaviors (subgraphs) are scored using a suspiciousness metric
and presented to the programmer in ranked order with the most
suspicious subgraph first. The fault rank gives the expected
number of behaviors a programmer would examine before ex-
amining a behavior containing the faulty location(s). The fault
rank gives an objective score enabling comparison between
different suspiciousness metrics for the same program version
and between different programs and versions. Note: it is not
appropriate to directly compare standard CBSFL techniques
to SBBFL techniques using this cost measure.

All of the algorithms compared in the study have an element
of randomness to them. For instance, Branch-And-Bound
algorithms make random choices about which subgraph to
keep when some have equal scores. SWRW is a sampling
algorithm and is explicitly randomized. Thus, all experiments
were replicated and their results were averaged. Sometimes the
algorithms return no behaviors that contain a faulty location —
a localization failure. To incorporate localization failures into

TABLE 1V: DATASETS USED IN THE EVALUATION

l Program [L.O.C. [Mutants [Description l
AVL (github.com/timtadh/dynagrok) 483 19| An AVL tree
Blackfriday (github.com/russross/blackfriday)| 8,887 19 | Markdown processor
HTML (golang.org/x/net/html) 9,540 20| An HTML parser
Otto (github.com/robertkrimen/otto) 39,426 20| Javascript interpreter
gC (go.googlesource.com/go) 51,873 16| The Go compiler

Note: The AVL tree is in the examples directory.

the overall average performance, the maximum fault rank for
the relevant program (across all algorithms) is used as the fault
rank when none of the returned behaviors contain the fault. Us-
ing the maximum fault rank as the cost of a localization failure
means that when evaluating the performance of the Branch-
And-Bound algorithms the average fault rank may be higher
than the number of subgraphs mined. Under the debugging
model assumed by these cost measures, programmers check
each behavior (or location for CBSFL) before moving on to
the next one in the list. Thus, a programmer using a SBBFL
tool that fails to localize a bug would need to examine all of
the mined graphs and then continue with traditional debugging
methods.

B. Limitations and Threats to Validity

This study only considered suspicious-behavior based fault
localization (SBBFL) algorithms. The results are intended to
indicate which of the algorithms considered performed the
best at the fault localization task, not whether SBBFL out-

avl (log scaled, lower is better)

10°
102}

el +
100 i lnnd i L d ki i lund kbl

Contrast F1 Info Jaccard Ochiai PrecisionRelative Relative Relative
Gain F1 Jaccard Precision

blackfriday (log scaled, lower is better)

Avg. Fault Rank

10°
102}

10t F

Avg. Fault Rank

10°

g) i i
Jaccard Ochiai PrecisionRelative Relative Relative

Contrast F1 Info
Gain F1

html (log scaled, lower is better)

Jaccard Precision

10°

102 4
I H |
o ‘\ H\ ik, A,

Avg. Fault Rank
>

‘\ M |
Contrast F1 Info accard Ochiai Precision Relative Relative Relative
Gain F1

otto (log scaled, lower is better)

Jaccard Precision

10°
102}
10t b

10°

Avg. Fault Rank

Contrast F1 Info Precision Relative R Relative
Gain F1 Jaccard Precision

compiler (log scaled, lower is better)

Avg. Fault Rank

Contrast F1 Info
Gain F1

Jaccard Ochiai PrecisionRelative Relative Relative
Jaccard Precision

Fig. 4: Fault localization performance of SWRW (log scaled, lower
is better). Each bar gives the average fault rank for a particular buggy
program version and suspiciousness metric from Table II. SWRW was
configured to use walk top vertices from Listing 2 with p = .2
and w = 2. Subgraphs with at most 100 edges were collected. The
experiment was repeated 20 times and the mean results are shown.

TABLE V: THE MEAN FAULT RANK FOR EACH METRIC IN FIG. 4.

102.1
101.8
131.3

Ochiai [40.6|Contrast 40.1 | Precision
Jaccard | 42.6 | Relative Jaccard |42.5 | Relative Precision

F1 42.6 | Relative F1 38.8 | Information Gain

performs CBSFL or other fault localization methods. Further
work is needed to fully evaluate SBBFL algorithms against
other approaches to fault localization (statistical or otherwise).
While our study tried to consider a representative set of
suspiciousness metrics, many other metrics are available [24]
and the results shown here may not fully generalize to those
metrics. Similarly, although the programs used in the study
were chosen to represent programs with varying degrees of
complexity, it was also necessary to choose programs with
readily available inputs, which limits the generalizability of
the results.

The gold standard for evaluating software testing techniques
is to use real bugs with real test cases during the evaluation
[35], [36]. In this paper, we are introducing a new language
(Go) and analysis platform (Dynagrok) to the software en-
gineering community, in addition to demonstrating a new
algorithm (SWRW) for fault localization. For long-established
programming languages such as Java there are many projects
available with bug databases that are suitable for use in fault
localization studies — such as Defects4]J [37]. In the future, the
authors believe such datasets should be constructed for Go as
well. For Go, this paper makes progress on tooling, in the
expectation that the datasets will come. In the meantime, our
new technique, SWRW, is evaluated using real test cases on
bugs which were injected via program mutation.

Another important threat to validity (for both our study and
previous studies [7], [8], [13]) is the use of the fault rank cost
measure. Recall that this cost measure is the expected number
of behaviors a programmer would consider before considering
a behavior containing the faulty location(s). This measure
is simple to compute and explain but it does not consider
the variable effort a programmer might need to expend on
behaviors of different sizes. Next, while the expectation takes
into account the faulty location appearing in multiple behaviors
it doesn’t take into account a programmer skipping behaviors
that contain locations the programmer has already examined.
We utilize this metric as way to compare the SBBFL per-
formance between similar algorithms, not to demonstrate the
overall superiority of SBBFL or SWRW in particular.

C. Which Suspiciousness Measure Works the Best?

Figure 4 shows the fault localization performance of SWRW
for all applicable suspiciousness metrics across all program
versions. Table V gives the average ranks for each metric
across all programs. SWRW was chosen because the other
algorithms (B&B and sLeap) only support Information Gain.
For all programs except the AVL tree, Information Gain, Pre-
cision, and Relative Precision all performed markedly worse
than the other metrics. Contrast, F1, Jaccard, Ochiai, Relative
F1, and Relative Jaccard all performed about the same (with
some small differences). This answers RQ1: the best metrics to
use are Contrast, F1, Jaccard, Ochiai, Relative F1, or Relative
Jaccard. Information Gain, despite being the metric of choice
in previous studies, was not competitive with five of the other
suspiciousness metrics considered in this empirical study. As

shown in Table V, Information Gain had the worst average
performance of all of the metrics considered.

D. Which Algorithm Performs the Best?

Figure 5 compares Branch-And-Bound (B&B), sLeap, and
SWRW in various configurations using the Information Gain
metric — the only metric under consideration that B&B and
sLeap can use. B&B and sLeap both have two versions. The
first version is the one discussed in Section IV. The second
version (denoted “B&B (max)” and “sLeap (max)”) imitates
the SWRW’s behavior during their search by having them
(only) traverse the suspicious subgraph lattice. SWRW was
run in 4 configurations: k-walks 100 (demonstrating k_ walks
with £ = 100 from Listing 2) and 3 configurations of walk-
top-vertices (demonstrating walk top vertices from Listing 2
with: p=2, w=2;p=1, w=2;and p =1, w = 10).

The second graph from the top in Figure 5 shows the
average fault localization performance for each algorithm on
three of the datasets: avl, blackfriday and otto. The third
and fourth graphs detail the fault localization performance

EZ23 B&B EEH sLeap 1 (max) B3 swrw walk-top-vertices 1:2
B&B (max) swrw k-walks 100 3 swrw walk-top-vertices 1:10
B sleap 1 E==1 swrw walk-top-vertices 0.2:2

— 60 Execution Time (lower is better)

5 L e e L o o e e e e B T s -~ s s
& 50 q

[}

/ \ :
= 30

%20 7 {

o

o

2 E Ol

= [
blackfriday

¥ 700F

& 600}

§ 500

o 400+

o 300f i

g 200

g 100

< 9 kX N
blackfriday

y HTML Fault Localization Perf. (lower is better)

% 300 g

o

E

©

.

Y

o

©

[

2 B (VO 1 [LJUI\L ,

sleapl sleapl swrw swrw swrw swrw
(max) kw 100 wtv 0.2:2 wtv 1:2 wtv 1:10

Compiler Fault Localization Perf. (lower is better)

B&B B&B
(max)

Average Fault Rank

0

B&B B&B SWrw SWrw swrw swrw
(max) (max) kw 100 wtv 0.2:2 wtv 1:2 wtv 1:10

Fig. 5: Comparision of Branch-And-Bound (B&B), sLeap, and
SWRW using Information Gain. In the first and second graphs each
bar represents the average performance for all program versions.
The third and fourth graphs “zoom in” on the fault localization
performance for the HTML Parser and the Go Compiler. Branch-
And-Bound and sLeap collected 50 subgraphs each. All algorithms
collected subgraphs with at most 15 edges. A 60 second timeout was
set for all executions. The experiment was repeated 20 times and the
mean results are shown. Note: “kw” = k-walks, “wtv” = walk-top-
vertices.

for HTML and the Go compiler respectively. SWRW in all
configurations performed significantly better than B&B and
sLeap. B&B and sLeap mined 50 subgraphs and often failed to
mine any subgraph containing the fault. Increasing k to allow
B&B and sLeap to mine more subgraphs did not help as they
would not reliably terminate. In comparison, SWRW usually
sampled a subgraph containing the fault. This answers RQ?2:
SWRW provided the best fault localization performance using
Information Gain. As noted above, it provided even better
performance when alternative suspiciousness metrics are used.

The top graph in Figure 5 shows the average execution time
for each algorithm on each dataset. The default configuration
of SWRW (corresponding to the blue bar with circles) was
able to extract the suspicious behaviors in less than 2 seconds
for all of the datasets except that for the Go Compiler (for
which it took 20 seconds). In comparison, B&B often timed
out and had an average execution time of 30 seconds or
more. sLeap performed much better than B&B (thanks to its
pruning heuristic) and was competitive with SWRW. However,
as shown in the first, third, and fourth graphs, SWRW had
much better fault localization performance.

E. Summary of Results

SWRW outperformed the other discriminative subgraph
mining algorithms at behavioral fault localization. Information
Gain, Precision, and Relative Precision all performed markedly
worse than the other suspiciousness metrics. The previous
mining algorithms use the Information Gain metric, and a
technical restriction (see Section IV) prevents them from using
any of the other metrics considered in Table II. Since SWRW
is not bound by the same restrictions as algorithms in the
Branch-And-Bound family, SWRW appears to be a better and
more flexible algorithm to use for behavioral fault localization.

VII. RELATED WORK

A. Fault Localization

There have been a number of studies [3], [7]-[15], [19],
[38] combining the statistical fault localization approach with
graph mining. We will discuss a few of representative studies.
C. Liu, X. Yan, H. Yu, J. Han, and P. Yu [3] first introduced
the idea of mining program behaviors to localize faults. Xifeng
Yan and Jiawei Han had previously created the classic frequent
subgraph mining algorithms gSpan [39] and CloseGraph [40]
but had yet to create LEAP Search [30]. The study used
CloseGraph to extract frequent subgraphs of dynamic call
graphs, which were then used as features in a classifier. The
classifier was then used to identify the functions in the program
which were most relevant to the fault.

Di Fatta et al. [8] uses a frequent subtree mining algorithm
(FREQT) to extract frequently occurring subtrees from the
dynamic call trees. They then used the Precision metric (see
Table II) to score each frequent subtree. Di Fatta et al
encountered scalability limitations when mining call trees
which they solved by tightly limiting the size of the extracted
subtrees.

Eichinger conducted multiple studies [9], [10], [12] us-
ing CloseGraph [40] as implemented by Worlein [41] in
ParSeMiS. In Eichinger’s studies, dynamic call trees are col-
lected and then reduced into weighted dynamic call graphs.
The frequent subgraphs are extracted using CloseGraph and
then scored using variants of Information Gain. The Informa-
tion Gain variants make use of the call weights [9] and dis-
cretized function parameter values [10]. Eichinger employed
a hierarchical [12] approach for multi-level (package, class,
and method) localization. A similar multi-level behavioral
localizer is HOLMES [19] which also employs an adaptive
profiler. However, instead of collecting call trees or call graphs
HOLMES collects path profiles [42].

H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan [7]
used LEAP Search [30] by X. Yan to localize faults. The
faults were localized to suspicious behaviors which are sub-
graphs of either dynamic control flow graphs or dynamic call
graphs. Cheng extended the original LEAP Search algorithm
to collect the Top-k subgraphs rather than just 1 subgraph.
Their extended algorithm is covered in detail in Section IV.
Cheng compares the results of their approach to RAPID [43]
which uses frequent sub-sequence mining (a cousin of frequent
subgraph mining) to extract frequently recurring sub-traces
from program execution traces.

Parsa et al. [13] presented an alternative algorithm to LEAP
Search [30] for finding the top-k discriminative subgraphs
for fault localization. Their algorithm fits into the Branch-
And-Bound framework and they claim similar performance
to LEAP Search. They define their own suspiciousness metric
which they call the Fgcore. Since their algorithm is a Branch-
And-Bound algorithm they also provide an upper bound for
their score.

B. Graph Mining

Significant subgraph mining [27]-[30] is an alternative
to the frequent subgraph mining problem [31]. Significant
subgraph mining finds the most important subgraphs as judged
an objective function. Kudo et al. presented gBoost [27] which
integrates discriminative subgraph mining into gSpan [39] — a
classic frequent subgraph mining algorithm — introducing the
first Branch-And-Bound algorithm. Saigo et al. [28] applied
partial least squares regression to graph data with gPLS. gPLS
uses a modified Branch-And-Bound algorithm to extract the
patterns which are used as features in a regression. Finally,
Thoma et al. [29] presented CORK which integrates a different
pruning operator into gSpan than gBoost used. CORK runs
gSpan in a loop. Each step of the loop it expands the set of
discriminative graphs by one graph until no improvement is
made.

The Branch-And-Bound (B&B) family of algorithms [27]—
[30] enumerates the subgraphs of F in a depth-first manner.
At each step of the algorithm Branch-And-Bound considers a
subgraph % of a graph g € F. Using a suspiciousness/impor-
tance measure (s above) B&B scores h. If h’s score higher
than best score found so far i becomes the exemplar 5. B&B
algorithms then compute supergraphs h’ of h (where b’ C g

for a graph g € F). For each h/, B&B checks to see if any
supergraph of h' could have a score at least as large as the
exemplar A by computing an upper bound ¢(h) on ¢(h/). If
the upper bound ¢(h') is less than the score of the exemplar
q(fz) then the supergraph A’ is pruned — otherwise it is added
to the queue of graphs to consider.

sLeap [30] improves on the basic Branch-And-Bound
framework by integrating a heuristic pruning condition into
the Branch-And-Bound algorithm. The amount of heuristic
pruning is controlled by a parameter vy (called o in the original
paper). The condition prunes the current subgraph A if it
has a supergraph /' that has already been processed and the
difference in support for i and A’ is with-in . The pruning
condition is heuristic, meaning sLeap only approximates the
behavior of Branch-And-Bound.

LEAP Search [30] uses sLeap as a subroutine of Frequency
Descending Mining. As this name suggests, it works by
running the sLeap algorithm repeatedly, each time with a lower
setting for the minimum frequency. At each step, the minimum
frequency is halved until either it reaches 1 or the output of
sLeap does not change between runs. Note that each iteration
of LEAP feeds the output of sLeap back into itself to seed
the set of maximally scored subgraphs. This pre-seeding of
sLeap allows later iterations to prune the search space much
faster. An (optional) last step of LEAP then runs sLeap one
last time with the heuristic pruning parameter v < 0 so that
no heuristic pruning is performed.

To the author’s knowledge this paper presents the first
algorithm to sample significant subgraphs. However, there
have been a number of studies on sampling frequent subgraphs
[32], [44]-[49]. Zou and Holder [44] create a representative
sample of the large graph to which they apply a traditional
frequent subgraph mining algorithm. The rest of the studies
[32], [45]-[49] model the search space as a frequent connected
subgraph lattice and perform various random walks on the
lattice in a similar fashion to SWRW. These systems intend
to provide a representative sample of the frequent subgraphs
in the dataset while SWRW attempts to extract the most
significant subgraphs.

VIII. CONCLUSIONS

We presented Score Weighted Random Walks (SWRW),
a new algorithm for Suspicious-Behavior Based Fault Lo-
calization (SBBFL). SWRW randomly samples suspicious
subgraphs of dynamic control flow graphs of passing and
failing executions, favoring selection of the most suspicious
subgraphs. Unlike previous algorithms for SBBFL, SWRW
may be used with a wide variety of suspiciousness metrics.
Nine metrics were adapted from coverage based statistical
fault localization. An empirical study was conducted on five
real world programs written in the Go programming language.
To support the study a new profiling tool for Go, Dynagrok,
was developed. The results indicate that SWRW is more
accurate and scalable than similar behavioral fault localization
algorithms.

[1]

[2

—

[3]

[4

=

[5

=

[6]
[7]

[8

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. Jones, M. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” Proceedings of the 24th International Con-
ference on Software Engineering. ICSE 2002, 2002.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. L. Jordan, “Scalable
statistical bug isolation,” ACM SIGPLAN Notices, vol. 40, no. 6, p. 15,
jun 2005.

C. Liu, H. Yu, P. S. Yu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining
Behavior Graphs for Backtrace of Noncrashing Bugs,” in Proceedings
of the 2005 SIAM International Conference on Data Mining. Society
for Industrial and Applied Mathematics, 2005, pp. 286-297.

J. Jones, “Fault localization using visualization of test information,” in
Proceedings. 26th International Conference on Software Engineering,
vol. 1, no. 1. IEEE Comput. Soc, 2004, pp. 54-56.

P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165-176.

F. Tip, “A survey of program slicing techniques,” Journal of Program-
ming Languages, vol. 3, no. 3, pp. 121-189, 1995.

H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug
Signatures Using Discriminative Graph Mining,” in Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis,
ser. ISSTA ’09. New York, NY, USA: ACM, 2009, pp. 141-152.

G. Di Fatta, S. Leue, and E. Stegantova, “Discriminative Pattern Mining
in Software Fault Detection,” in Proceedings of the 3rd International
Workshop on Software Quality Assurance, ser. SOQUA ’06. New York,
NY, USA: ACM, 2006, pp. 62-69.

F. Eichinger, K. Bohm, and M. Huber, Mining Edge-Weighted Call
Graphs to Localise Software Bugs. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 333-348.

F. Eichinger, K. Krogmann, R. Klug, and K. Bohm, “Software-defect
Localisation by Mining Dataflow-enabled Call Graphs,” in Proceedings
of the 2010 European Conference on Machine Learning and Knowledge
Discovery in Databases: Part I, ser. ECML PKDD’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 425-441.

Z. Mousavian, M. Vahidi-Asl, and S. Parsa, “Scalable Graph Analyzing
Approach for Software Fault-localization,” in Proceedings of the 6th
International Workshop on Automation of Software Test, ser. AST "11.
New York, NY, USA: ACM, 2011, pp. 15-21.

F. Eichinger, C. Ofner, and K. Bohm, “Scalable software-defect local-
isation by hierarchical mining of dynamic call graphs,” Proceedings of
the 11th SIAM International Conference on Data Mining, SDM 2011,
no. ¢, pp. 723-734, 2011.

S. Parsa, S. A. Naree, and N. E. Koopaei, “Software Fault Localization
via Mining Execution Graphs,” in Proceedings of the 2011 International
Conference on Computational Science and Its Applications - Volume
Part 11, ser. ICCSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
610-623.

L. Mariani, F. Pastore, and M. Pezze, “Dynamic Analysis for Diagnosing
Integration Faults,” IEEE Trans. Softw. Eng., vol. 37, no. 4, pp. 486-508,
jul 2011.

A. Yousefi and A. Wassyng, “A Call Graph Mining and Matching
Based Defect Localization Technique,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops.
IEEE, mar 2013, pp. 86-95.

A. Aho, R. Sethi, M. S. Lam, and J. D. Ullman, Compilers: principles,
techniques, and tools, 2007.

J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula
Automatic Fault-localization Technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273-282.
R. Abreu, P. Zoeteweij, and A. Van Gemund, “An Evaluation of Similar-
ity Coefficients for Software Fault Localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39-46.

T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
“HOLMES: Effective Statistical Debugging via Efficient Path Profil-
ing,” in Proceedings of the 31st International Conference on Software
Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE Computer

Society, 2009, pp. 34—44.
G. G. K. Baah, A. Podgurski, and M. J. M. Harrold, “Causal inference

for statistical fault localization,” in Proceedings of the 19th international

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

(35]

(36]

[37]

[38]

symposium on Software testing and analysis, ser. ISSTA *10. New York,
NY, USA: ACM, 2010, pp. 73-84.

G. K. Baah, A. Podgurski, and M. J. Harrold, “Mitigating the Confound-
ing Effects of Program Dependences for Effective Fault Localization,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 146-156.

F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” Proceedings of the 2013 International Symposium on Software
Testing and Analysis - ISSTA 2013, p. 314, 2013.

S. Yoo, M. Harman, and D. Clark, “Fault Localization Prioritization:
Comparing Information-theoretic and Coverage-based Approaches,”
ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 19:1—-19:29,
jul 2013.

Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended comprehen-
sive study of association measures for fault localization,” Journal of
Software: Evolution and Process, vol. 26, no. 2, pp. 172-219, feb 2014.
T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: better together,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering
- ESEC/FSE 2015, no. 65. New York, New York, USA: ACM Press,
2015, pp. 579-590.

S.-F. Sun and A. Podgurski, “Properties of Effective Metrics for
Coverage-Based Statistical Fault Localization,” in 20/6 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST). IEEE, apr 2016, pp. 124-134.

T. Kudo, E. Maeda, and Y. Matsumoto, “An Application of Boosting
to Graph Classification,” in Proceedings of the 17th International
Conference on Neural Information Processing Systems, ser. NIPS’04.
Cambridge, MA, USA: MIT Press, 2004, pp. 729-736.

H. Saigo, N. Krimer, and K. Tsuda, “Partial least squares regression for
graph mining,” in Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD 08. New
York, New York, USA: ACM Press, 2008, p. 578.

M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola,
L. Song, P. S. Yu, X. Yan, and K. M. Borgwardt, “Discriminative fre-
quent subgraph mining with optimality guarantees,” Statistical Analysis
and Data Mining, vol. 3, no. 5, pp. 302-318, aug 2010.

X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining Significant Graph
Patterns by Leap Search,” in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’08.
New York, NY, USA: ACM, 2008, pp. 433-444.

H. Cheng, X. Yan, and J. Han, “Mining Graph Patterns,” in Frequent
Pattern Mining. Cham: Springer International Publishing, 2014, pp.
307-338.

T. A. D. Henderson and A. Podgurski, “Sampling Code Clones from
Program Dependence Graphs with GRAPLE,” in International Workshop
on Software Analytics. ACM, 2016.

J. G. Kemeny and J. L. Snell, Finite Markov Chains, 1st ed. Princeton,
NJ: Van Nostrand, 1960.

C. M. Grinstead and J. L. Snell, Introduction to Probability, 2nd ed.
Providence, RI: American Mathematical Society, 1997.

R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp.
437-440.

S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and Improving Fault Localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering, ser. ICSE *17. Piscataway, NJ, USA: IEEE Press, 2017, pp.
609-620.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are Mutants a Valid Substitute for Real Faults in Software Testing?”
in Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New York,
NY, USA: ACM, 2014, pp. 654-665.

D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classification of
software behaviors for failure detection,” in Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and
data mining - KDD '09. New York, New York, USA: ACM Press,
2009, p. 557.

[39]

[40]

[41]

[42]

[43]

X. Yan and J. Han, “gSpan: graph-based substructure pattern mining,”
in 2002 IEEE International Conference on Data Mining, 2002. Proceed-
ings. 1EEE Comput. Soc, 2002, pp. 721-724.

, “CloseGraph: Mining Closed Frequent Graph Patterns,” in Pro-
ceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’03. New York,
NY, USA: ACM, 2003, pp. 286-295.

M. Worlein, T. Meinl, I. Fischer, and M. Philippsen, “A quantitative
comparison of the subgraph miners MoFa, gSpan, FFSM, and Gaston,”
in 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases. Porto, Portugal: Springer Berlin Heidelberg,
2005, pp. 392-403.

T. Ball and J. Larus, “Efficient path profiling,” in Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 29. 1EEE Comput. Soc. Press, 1996, pp. 46-57.

H.-Y. Hsu, J. A. Jones, and A. Orso, “Rapid: Identifying Bug Signa-
tures to Support Debugging Activities,” in International Conference on
Automated Software Engineering. 1EEE, sep 2008, pp. 439-442.

[44]

[45]

[46]

[47]

[48]

[49]

R. Zou and L. B. Holder, “Frequent subgraph mining on a single large
graph using sampling techniques,” Proceedings of the Eighth Workshop
on Mining and Learning with Graphs - MLG 10, pp. 171-178, 2010.
V. Chaoji, M. Al Hasan, S. Salem, J. Besson, and M. J. Zaki,
“ORIGAMI: A Novel and Effective Approach for Mining Representative
Orthogonal Graph Patterns,” Stat. Anal. Data Min., vol. 1, no. 2, pp. 67—
84, jun 2008.

M. Al Hasan and M. J. Zaki, “Output Space Sampling for Graph
Patterns,” Proc. VLDB Endow., vol. 2, no. 1, pp. 730-741, aug 2009.
M. Al Hasan and M. Zaki, Musk: Uniform Sampling of k-Maximal
Patterns. Philadelphia, PA: Society for Industrial and Applied Mathe-
matics, apr 2009, ch. 55, pp. 650-661.

T. K. Saha and M. A. Hasan, “FS³: A sampling based
method for top-k frequent subgraph mining,” in 2014 IEEE International
Conference on Big Data (Big Data). IEEE, oct 2014, pp. 72-79.

T. A. D. Henderson and A. Podgurski, “Rethinking Dependence Clones,”
in International Workshop on Software Clones. 1EEE, 2017.

