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Abstract—Statistical Fault Localization (SFL) uses coverage
profiles (or “spectra”) collected from passing and failing tests,
together with statistical metrics, which are typically composed
of simple estimators, to identify which elements of a program
are most likely to have caused observed failures. Previous SFL
research has not thoroughly examined how the effectiveness
of SFL metrics is related to the proportion of failures in test
suites and related quantities. To address this issue, we studied
the Defects4J benchmark suite of programs and test suites and
found that if a test suite has very few failures, SFL performs
poorly. To better understand this phenomenon, we investigated
the precision of some statistical estimators of which SFL metrics
are composed, as measured by their coefficients of variation.
The precision of an embedded estimator, which depends on the
dataset, was found to correlate with the effectiveness of a metric
containing it: low precision is associated with poor effectiveness.
Boosting precision by adding test cases was found to improve
overall SFL effectiveness. We present our findings and discuss
their implications for the evaluation and use of SFL metrics.

I. INTRODUCTION

The Defects4J repository [1] provides automatic fault local-
ization researchers with much of what they require to do mean-
ingful empirical evaluations and comparisons of automated
fault localization techniques: a number of substantial “real
world” subject programs, each with multiple faulty versions
and a test suite that triggers failures of those versions. How-
ever, for the purposes of evaluating and comparing statistical
fault localization (SFL) techniques [2], which measure statisti-
cal associations between program failures and runtime events
at individual program locations, Defects4J presents a major
problem: for most faulty program versions, the corresponding
test suite exhibits very few failures. Given that program failures
are rare events, a statistical test of the hypothesis that covering
a given program statement (or other program element) has
a causal effect on the occurrence of failures will usually be
under-powered [3]. Similarly, an estimate of the causal effect
of covering a given statement on the occurrence of failures
will often be inaccurate — regardless of confounding bias.

Typical “suspiciousness” metrics used in SFL (e.g., to rank
statements for examination by programmers) may be viewed
as ad hoc causal-effect measures, which do not adjust for
confounding bias [2]. Even in the absence of confounding,
we have found that these metrics do not generally perform
well, due to imprecision (sampling variability), if any of the

following subsets of the test set is too small: the overall
number of tests; the number of failing tests; and the number of
tests that cover a particular statement. The relative precision
of a statistical estimator is characterized by its coefficient
of variation (CV) [4], [5], which is the ratio σ/µ of its
standard deviation (standard error) to its mean. The higher
an estimator’s CV is, the lower its relative precision. The CV
for an estimate of a very small proportion or probability can
be large even if σ is small.

Many SFL metrics include one or more of the following
terms (or minor variations of them) either explicitly or im-
plicitly: (a) the proportion of failing tests among all tests in
the test suite; (b) the proportion of tests that cover a given
statement s among all failing tests; or (c) the proportion of
failing tests among all tests that cover a given statement s
([2], [6], [7]). These terms are in fact statistical estimators,
which are affected by the frequency of failures. In this paper
we shall demonstrate that when such an estimator is computed
for a test suite with very few failures, it is likely to have low
relative precision, as measured by its coefficient of variation.
We also provide empirical evidence that this results in poor
fault localization performance.

II. BACKGROUND

A. Defects4J Framework

One of the concerns fault localization studies often face is
related to the evaluation of proposed metrics or techniques.
Previous studies have employed a variety of subject pro-
grams, faults, and test suites, such as those available from
the Software-artifact Infrastructure Repository [8]. Typically,
the subject programs used in these studies have been fairly
small in size and the faults have been simple, one-line faults,
often generated by program mutation [9]. Faults of omission
are uncommon in these subject programs.

The Defects4J repository [1], which is composed of six
large Java programs, 395 versions with real faults, and their
test suites, is a promising alternative. In Defects4J, 76%
of the faults span multiple program lines, and 30% of the
faults involve code omissions. A complete dissection of the
Defects4J dataset can be found in the recent paper by Sobreira
et al. [10], which describes the types of faults and fixes
for each subject program. In the sequel, we will use the



terms “subject program” and “project” interchangeably when
discussing Defects4J.

Identifier Project Name # of Faulty Versions
Chart JFreeChart 26
Closure Closure Compiler 133
Lang Apache commons-Lang 65
Math Apache commons-Math 106
Mockito Mockito 38
Time Joda-Time 27

TABLE I
DEFECTS4J SUBJECT PROGRAMS AND NUMBER OF FAULTY VERSIONS

FOR EACH PROGRAM

Table I characterizes the contents of the Defects4J reposi-
tory. The faulty program versions for each project are obtain-
able via the checkout command from the corresponding project
repositories. Each faulty version is accessible by its project ID
and fault ID. For each fault ID there is a faulty branch and
a fixed branch of the same version of the project. They differ
only in the line(s) where the fault is fixed. For instance, the
first faulty (buggy) version of the project Chart is identified
as “-p Chart -v 1b” and the fixed branch of the same faulty
version is referenced by “- p Chart -v 1f” in the checkout
command. Fixes made to the faulty versions of a project range
in extent from replacement of individual operators to insertion
or removal of chunks of code in different locations in the
project [10]. All the changes are well documented and are
accessible with the info command. All the faults are arranged
in chronological order; for instance, in project Chart, faulty
version 1 is the most recent version in the repository and faulty
version 26 is the earliest version.

In the test suite for each faulty Defects4J program version,
there exists a failing test case, which is called a relevant test,
that reveals the fault in that version. These failures are not
random, nor do they rely on the execution order of the tests.
By default, the tests relevant to a certain fault are executed
using the test command. However, the framework allows tests
to be run manually either as a single test case or as a group of
tests. Defects4j can report properties of a project version such
as the list of relevant test cases, the tests that trigger a fault, and
the classes loaded for the tests. The aforementioned features
of Defects4J allow parts of the test suite to be analyzed
independently and provide control of how the tests are run
for a given program version.

B. Common Elements of Coverage-Based SFL Metrics

Statistical fault localization techniques often analyze code-
coverage profiles (or “spectra”) in order to correlate coverage
of individual program elements (such as statements, basic
blocks, or functions) with program failures. This is done
using measures of statistical association, which are known
as coverage-based SFL (or SBFL) metrics or suspiciousness
metrics. Different metrics can be defined using some common
notation, which is summarized in Table II.

Various studies have pointed out commonalities between
SFL metrics (e.g., [2], [6], [7]). In addition to the quantities
listed in Table II, certain subexpressions occur in a number
of metrics, either explicitly or implicitly. Three examples of

Notation Definition
n Total number of test cases in the test suite
n(s) Number of test cases that execute statement s
np Number of passing test cases
nf Number of failing test cases
np(s) Number of tests that execute statemment s and pass
nf (s) Number of tests that execute statement s and fail

TABLE II
NOTATION USED IN DEFINING ASSOCIATION MEASURES

Project All Tests Passing Failing
Chart 185 181 4
Closure 3351 3348 3
Mockito 671 668 3
Time 2525 2522 3
Lang 94 92 2
Math 172 170 2

TABLE III
AVERAGE NUMBERS OF TESTS PER DEFECTS4J SUBJECT PROGRAM

such subexpressions are [7]: (a) the proportion of failing
tests among all tests in the test suite, nf

n , which is an
estimator for the probability Pr[failure]; (b) the proportion of
tests that cover a given statement s among all failing tests,
nf (s)
nf

, which is an estimator of the conditional probability
Pr[s covered |failure]; or (c) the proportion of failing tests
among all tests that cover a given statement s, nf (s)

n(s) , which
is an estimator of Pr[failure|s covered ].1 For example, the
Ochiai metric [11] can be written as√

nf (s)

nf
· nf (s)
n(s)

≈
√
Pr[s|failure] Pr[failure|s]

III. CHARACTERIZING THE PRECISION OF ESTIMATES

The precision of a statistical estimator is often characterized
by its variance or standard deviation (standard error) [4],
and an estimator with high variance is considered imprecise.
However, when estimating the frequency or probability of
rare events, it is preferable to use the coefficient of variation
of the estimator, σ/µ, where σ is the standard deviation
of the estimator and µ is its expected value [5]. The CV
characterizes the relative precision of an estimator. For an
unbiased estimator, whose expected value is equal to the
estimand (the parameter to be estimated), a high CV value
indicates that the estimator is highly variable relative to the
magnitude of the estimand. Dixon et al. [5] point out, in
the context of ecological studies, that when the precision of
an estimate is low, it is more difficult to detect differences
between groups of interest or patterns in the frequency of
rare events. In SFL, low precision can cause correct program
statements to be ranked higher than faulty statements for
examination by programmers. Dixon et al. also state that if an
event is truly rare (probability π ≤ 0.01) then its maximum
likelihood estimate p̂ = n/N , where n is the number of
events observed and N is the total number of observations, has
“reasonable” precision (CV (p̂) ≤ 10%) only when N > 1000,

1Each of these estimators is a sample proportion and so is unbiased in
the sense that its expected value is equal to the probability to be estimated.
However, their use does not prevent confounding bias when estimating causal
effects, which are defined in terms of counterfactuals [2].



whereas for N < 100, CV (p̂) may exceed 300%. (Note that
the standard error of p̂ is

√
p̂(1− p̂)/N .) Of course, using

a larger sample size generally entails higher costs. In fault
localization, these include the costs of constructing new test
cases, executing them, and evaluating the results.

Project Failure Prop. CV(a) (%) CV(b) (%) CV(c) (%)
Chart 0.0216 49.4 65.2 55.0
Closure 0.0009 57.7 83.5 83.3
Mockito 0.0045 57.6 77.5 76.5
Time 0.0012 57.7 71.1 70.2
Lang 0.0213 69.9 88.1 80.2
Math 0.0116 70.2 91.5 86.6

TABLE IV
AVERAGE FAILURE PROPORTION AND COEFFICIENTS OF VARIATION OF

(a)
nf

n
, (b)

nf (s)

nf
, AND (c)

nf (s)

n(s)
, FOR EACH DEFECTS4J SUBJECT

PROGRAM

Earlier we indicated that the proportions of failing tests
in the test suites for many faulty Defects4J subject program
versions are very low. Table III presents the average numbers
of tests overall, of passing tests, and of failing tests, over the
faulty versions of each subject program, each of which has its
own test suite. Table IV presents the average failure proportion
and the average coefficients of variation, over all statements in
all faulty versions of each Defects4J subject program, of each
of the subexpressions mentioned in Section II-B as occurring
in a number of SFL metrics. That is, Table IV presents the
average failure proportion and the average values of CV (

nf

n ),
CV (

nf (s)
nf

), and CV (
nf (s)
n(s) ). It is clear that each average

failure proportion is low and each CV is high, with the CVs
ranging from 49.4 to 91.5. These values indicate that the
relative precision of the three common subexpressions is low
for the Defects4J faulty versions, and it suggests that any SFL
metric that contains one or more of the subexpressions, such
as the Ochiai metric, is at risk of being imprecise when the
failure proportion is low (unless it downweights those terms).

IV. PRECISION VERSUS FAULT LOCALIZATION
EFFECTIVENESS

We now investigate the relationship between estimation pre-
cision and fault localization effectiveness using the Defects4J
suite.

Fig. 1. Scatter plot of
nf

n
versus EXAM score achieved with the Ochiai

metric, for all faulty Defects4J program versions

Specifically, we relate the values of the common SFL-
metric subexpressions nf

n , nf (s)
nf

and nf (s)
n(s) , as well as their

coefficients of variation, to the effectiveness of the Ochiai
metric as measured by its EXAM score [12], for all 395
faulty program versions in Defects4J. Recall that the Ochiai
metric includes the latter two proportions as subexpressions.
The EXAM score is the percentage of program statements
that a developer must examine, in non-increasing order of
their suspiciousness scores, to find the first faulty statement
[12]. (It was assumed that if a faulty location L has the
same suspiciousness score as other locations, half of the
tied locations must be examined to find L on average.) For
calculating both the EXAM score and the CV values, we
modified scripts provided by Pearson et al. [13], which use
Gzoltar [14] for collecting coverage information.

Fig. 2. Scatter plot of average value of
nf (s)

nf
versus EXAM score achieved

with the Ochiai metric, for all faulty Defects4J program versions. The
proportion was averaged over all statements in a version.

Fig. 3. Scatter plot of average value of
nf (s)

n(s)
versus EXAM score achieved

with the Ochiai metric, for all faulty Defects4J program versions. The
proportion was averaged over all statements in a version.

Figure 1 is a scatter plot of the failure proportion nf/n
versus the EXAM score achieved with the Ochiai metric, for
all 395 faulty Defects4J program versions. Figures 2 and 3
are scatter plots of average values of the proportions nf (s)

nf
and

nf (s)
n(s) , respectively, versus the EXAM score achieved with the

Ochiai metric, for all faulty Defects4J program versions. The
proportions were averaged over all statements in a version. It is
evident that low values of the three proportions are associated
with high EXAM scores, that is, with high fault localization
cost.



Fig. 4. Scatter plot of CV (
nf

n
) versus EXAM score achieved with the Ochiai

metric, for all faulty Defects4J program versions.

Fig. 5. Scatter plot of CV (
nf (s)

nf
) for faulty statement s versus EXAM score

achieved with Ochiai metric, for all faulty Defects4J program versions.

Fig. 6. Scatter plot of CV (
nf (s)

n(s)
) for faulty statement s versus EXAM score

achieved with Ochiai metric, for all faulty Defects4J program versions.

Figure 4 shows a scatter plot of CV (
nf

n ) versus EXAM
score achieved with the Ochiai metric, for all the faulty
Defects4j program versions. Figures 5 and 6 show scatter
plots of CV (

nf (s)
nf

) and CV (
nf (s)
n(s) ), respectively, for a faulty

statement s versus the EXAM score achieved with the Ochiai
metric, for all faulty Defects4J program versions. (For a
version with multiple faulty statements, only the CV for the
lowest ranked statement is plotted.) It is evident that, in both
figures, high CV values are associated with high EXAM scores,
that is, with high fault localization cost, although some some
program versions had low EXAM scores despite having high
CV values. This appears to be due to the fact that the Defects4J
test suites each contain a relevant test, which reveals the fault
in the corresponding program version. Of courses, in general
it is not algorithmically decidable if a given test suite contains
a relevant test.

V. INCREASING SAMPLE SIZE

As mentioned earlier, one basic way of increasing the
precision of estimates of rare event frequencies is to increase
the sample size. We mentioned that when the Defects4j test
command is invoked out, only the relevant test for a particular
fault is executed. The whole test suite is usually not executed
due to performance concerns. Fortunately, it is possible to
combine Defects4J test suites for certain versions of a subject
program by combining the list of tests to be executed to obtain
larger test suites without manually introducing more code to
the programs. We exploited this fact to explore the effect on
SFL performance (cost) of increasing the sample size.

Specifically, we took the union of test suites (relevant tests)
for a number of pairs of faulty program versions, in increasing
order of faulty program version numbers. For example, faulty
version Vn is combined with Vn+1, and Vn+2 is combined with
Vn+3. The two program versions in each pair had different
fault locations and different test suites. The faulty program
versions were not themselves merged; only the test suites
(sets of relevant tests) were merged. This process produced a
number of new test suites that were larger than the ones they
were composed of, with minimal differences in the program
files and code. Table V shows the number of enlarged test
suites obtained. We then compared the EXAM scores for the
Ochiai metric and for the original and modified test suites to
see if increasing the sample size improved fault localization
effectiveness.

Project # of New Test Suites
Chart 10
Time 10
Lang 10
Math 10
Total 40

TABLE V
NUMBER OF ENLARGED TEST SUITES OBTAINED PER PROGRAM

Unfortunately, when trying to combine the test suites of
Mockito and Closure, we encountered an error with Gzoltar
that prevented us from obtaining enlarged test suites for those
programs. The results are displayed in Figure 7.

Fig. 7. EXAM score difference (cost reduction) for all enlarged test suites,
higher is better in this chart.

Out of 40 enlarged test suites, 35 had EXAM scores that
were no higher, and that in several cases were lower, than



for the original suites. This indicates that increasing the test
suite size reduced fault localization cost in these cases. The
remaining 5 suites had higher EXAM scores than original
suites. We believe that in the latter cases the added tests did
not increase coverage of the faulty statements.

VI. CONCLUSION

We have examined how the precision of a statistical fault
localization metric affects its performance, and how a test suite
that induces few failures can cause SFL metrics to exhibit low
relative precision, as measured by their coefficient of variation,
and poor performance. We have also provided empirical evi-
dence that this occurs with the Defects4J benchmark suite, and
we examined the effect on precision of increasing the sample
size. Our results suggest that evaluating any SFL metric using
fault localization benchmarks with few failure-inducing tests is
very likely to ensure that the metric exhibits poor performance.
One important implication of this is that SFL metrics are
applicable only in scenarios in which significant numbers of
failure-inducing inputs, as well as success-inducing inputs, can
be obtained and labeled. The such scenarios would occur,
for example, when many end-users report failures but pro-
files/spectra are collected automatically.

Our results also indicate that when deciding on the applica-
bility of statistical fault localization to a given program and test
suite, it is prudent to compute the coefficients of variation (CV)
of SFL metrics under consideration or their subexpressions. If
this indicates that a metric is likely to exhibit low precision,
that implies it is not the right choice for this application.
Adding new test cases that increase coverage and test case
diversity more generally may improve SFL accuracy.

VII. FUTURE WORK

We intend to replicate our study with additional collections
of subject programs and with additional SFL metrics. In
particular, Defects4J contains only single-fault versions of
programs, so a study involving programs with multiple real
faults is needed. We also intend to investigate the effects on
fault localization performance of removing failing tests from
test suites and, separately, of adding relevant tests.
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