
Artifact for Improving Fault Localization by
Integrating Value and Predicate Based Causal

Inference Techniques
Yiğit Küçük,

Department of Computer and Data Sciences
Case Western Reserve University

Cleveland, OH, USA
yxk368@case.edu

Tim A. D. Henderson,
Google Inc.

Mountain View, CA, USA
tadh@google.com

Andy Podgurski
Department of Computer and Data Sciences

Case Western Reserve University
Cleveland, OH, USA
podgurski@case.edu

Abstract—This work presents an overview of the artifact for
the paper titled ”Improving Fault Localization by Integrating
Value and Predicate Based Causal Inference Techniques”. The
artifact was implemented in a virtual machine and includes the
scripts for the UniVal algorithm for fault localization employing
the Defects4J test suite. Technical information about the individ-
ual components for the artifact’s repository as well as guidance
on the necessary documentation for utilizing the software are
provided.

I. INTRODUCTION

This work introduces the artifact for our paper titled ”Im-
proving Fault Localization by Integrating Value and Predicate
Based Causal Inference Techniques” [1]. The artifact facili-
tates the use of the UniVal algorithm for localizing software
faults using the Defects4J (v2.0) test suite [2].
The artifact consists of the following:

• Scripts to run the UniVal fault localization technique.

• The implementation of our prototype tools detailed in our
paper: Predicate Transformer and GSA Gen.

• Our implementations of the competing fault localization
techniques included in our paper: NUMFL-DLN/PLY [3],
Elastic Predicates (ESP) [4], Baah2010 [5], Ochiai [6],
D-Star [7] and Predicate Switching [8].

• Scripts for possible extensions which can be used to
include additional automatically generated tests.

We designed the artifact to be an Oracle VirtualBox virtual
machine image that can be downloaded and imported as an
appliance using the VirtualBox software [9]. The operating
system used for the virtual machine image is Ubuntu 20.04
LTS.

Users need no additional technological skills in order to
set the virtual machine up and use it. Therefore, there are no
requirements or software dependencies necessary to be able
to run the artifact except the minimum requirements for the
VirtualBox software [9]. Running the complete process of our
algorithm is as simple as a command to a bash script (e.g.
∼UniVal Closure 62). The materials we make available in

our artifact can be reused by researchers and practitioners
in various ways – either to access the code for UniVal from
our study on different subject programs and test suites or to
augment the current code in the study and improve their own
research and technologies.

The entire artifact is stored in a permanent Zenodo repos-
itory [10]. In addition to the virtual machine image, we in-
cluded the following documents for guidance in the repository:

• Install.pdf - Explains how to download and set up the
artifact virtual machine image from scratch.

• Readme.pdf - Comprehensive guide about all the scripts
and directories in the virtual machine image.

• Paper.pdf - Copy of our accepted paper [1].

II. TECHNICAL INFORMATION

In this artifact, we assumed no additional programming or
technology skills. Therefore, all the scripts are ready-to-use.
After the installation, users of the artifact are recommended to
assign at least 8 GB of RAM and 4 CPU Cores to the virtual
machine for a smooth experience.

We used Java, R and Bash scripts to orchestrate the fault
localization process. Our main script is named UniVal.sh
which takes as arguments 1) a Defects4J project name, and
2) the project version [10] and outputs a suspiciousness list of
program variables (UniVal algorithm transforms control state-
ment predicates to variables) to be used in the fault localization
process. Defects4J [2] consists of Java programs, therefore we
implemented our instrumentation library in Java. Defects4J
programs also use various Java versions, and consequently,
we adapted the instrumentation script to work with the Java
versions we encountered in our experiments (Java 5-8).

Our prototype tools both use Java 8 in their implementa-
tions. Predicate Transformer changes the source code in place
for predicates in control statements, mapping them to variables
introduced by the tool. For GSA Gen, we used Antlr (v4) [11]
and overloaded parser methods to guide the instrumentation
according to the Gated Static Single Assignment (GSA) form
[12]. In addition to the instrumented classes for data profiling,



GSA Gen also outputs the causal map that is later used for
our causal inference based technique.

For implementations of the fault localization metrics and
modeling and predicting counterfactual outcomes, we used R
scripts. R is a powerful programming language for statistical
operations and to have broader applicability of our technique,
it was important to have a modular approach in designing
the artifact. The resulting files are named after each metric
compared, and they consist of a list of the program variables,
and their suspiciousness scores.

Although we used Defects4J suite in our experiments for
our paper, our tools are applicable to a wider spectrum of
Java subject programs. The modular integration we have with
instrumentation and the metrics calculations can be used for
most Java programs with minor changes to the script such as
paths to certain files.

In our paper, we did not include String type variables
or additional automatically generated tests [2] in addition to
the developer tests in our comparison and experiments due
to the constraints of the techniques compared with UniVal
[1]. However, since we support these aspects in UniVal, we
decided to include the scripts in the virtual machine image. We
modified a test generation script from the Defects4J repository
to guide the additional tests in a directory and introduced a
script for combining different test generation sources [2]. We
created two optional parameters in the main Bash script of
UniVal algorithm. We expect to extend this work using these
aspects of comparison in a future study.

ACKNOWLEDGEMENT

This work was partially supported by NSF award CCF-
1525178 to Case Western Reserve University. The authors
would also like to thank Zhoufu Bai for providing scripts we
used for including NUMFL into our evaluation.

REFERENCES

[1] Y. Kucuk, T. A. Henderson, and A. Podgurski, “Improving fault lo-
calization by integrating value and predicate based causal inference
techniques,” arXiv preprint arXiv:2102.06292, 2021.

[2] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 437–440.

[3] Z. Bai, G. Shu, and A. Podgurski, “Causal inference based fault localiza-
tion for numerical software with numfl,” Software Testing, Verification
and Reliability, vol. 27, no. 6, p. e1613, 2017.

[4] R. Gore, P. F. Reynolds, and D. Kamensky, “Statistical debugging
with elastic predicates,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2011, pp. 492–495.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for
statistical fault localization,” in Proceedings of the 19th international
symposium on Software testing and analysis. ACM, 2010, pp. 73–84.

[6] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), 2007, pp. 89–98.

[7] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[8] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th international conference
on Software engineering, 2006, pp. 272–281.

[9] “Virtual box.” [Online]. Available: https://www.virtualbox.org/
[10] Y. Kucuk, T. Henderson, and A. Podgurski, “Improving

Fault Localization by Integrating Value and Predicate Based
Causal Inference Techniques,” Jan. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4441439

[11] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[12] K. J. Ottenstein, R. A. Ballance, and A. B. Maccabe, “Gated single-
assignment form: dataflow interpretation for imperative languages,” in
ACM SIGPLAN Symposium on Programming Language Design and
Implementation, 1990.


