
How to Evaluate Statistical Fault Localization
Tim A. D. Henderson

Google Inc.
Mountain View, California

tadh@google.com

1 INTRODUCTION
Automatic fault localization is a software engineering technique to
assist a programmer during the debugging process by suggesting
suspicious locations that may be related to the root cause of the
bug. The big idea behind behind automatic fault localization (or
just fault localization) is by pointing the programmer towards the
right area of the program the programmer will find the cause of
the bug more quickly.

One approach to fault localization is Spectrum Based Fault Lo-
calization which is also known as Coverage Based Statistical Fault
Localization (CBSFL) [22, 29, 41]. This approach uses test coverage
information to rank the statements from most “suspicious” to least
suspicious. To perform CBSFL, test cases are run through an instru-
mented program. The instrumentation collects coverage profiles
which report each statement1 executed during the test run. A test
oracle is used to label each execution profile with whether or not
the test passed or failed. Such oracles can be either automatic or
manual (i.e. a human). The labeled execution profiles are referred
to as the coverage spectra.

CBSFL techniques score each program element (location in the
program) by its “statistical suspiciousness” such that the most sus-
picious element has the highest score. The scores are computed by
suspiciousness metrics which attempt to quantify the relationship
between the execution each program element and the occurrence
of program failure.

There have been a great many statistical fault localization suspi-
ciousness metrics proposed [29] since the idea was first proposed by
Jones, Harrold and Stasko in 2002 [22]. The majority of the metrics
are computed from just a few values: the number of tests n, the
number of passing tests p, the number failing tests f , the number
of test runs an element e was executed in ne , the number of passing
test runs an element was executed in pe , and the number of failing
test runs an element was executed in fe . For instance, using these
simple statistics one can estimate the conditional probability of
program failure F given that a particular element e was executed:

Pr [F |e] =
Pr [F ∩ e]

Pr [e]
≈

fe
n
ne
n
=

fe
ne

(1)

While many of the studies in statistical fault localization use more
complex formulas [29, 41] (with various technical motivations)
most of the metrics are measures statistical association as in the
equation above.

The runtime information used to compute the above statistics
is commonly referred to as the coverage spectra of the program.
Coverage spectra is a matrix C where Ci, j > 0 indicates that the
program element Ei was executed at least once during test Tj .

1The coverage can be collected at other levels as well. For instance there has been
work which collects it at the class, method, and basic block levels.

Additionally, there is an additional “test status” vector S where
Sj = “F” if test Tj failed and Sj = “P” if test j passed.

To collect the coverage spectra the program is instrumented
to collect a runtime profile of the executed elements. This instru-
mentation can be done (in principle) at any granularity including:
expression, statement, basic block2, function, class, file, or package.
The statistical methods which make use of spectra are agnostic
to their granularity. While the granularity does not effect the sta-
tistical computation it changes how the localization results are
perceived by the programmer. In the past, programmers have indi-
cated a desire for finer grained results: at statement, basic block, or
function level [24] over very coarse grained results at the class, file,
or package level.

Some statistical fault localization techniques use additional in-
formation to either improve accuracy or provide more explain-
able results. For instance, work on Causal Fault Localization uses
additional static and dynamic information to control for statisti-
cal confounding [11]. In contrast Suspicious Behavior Based Fault
Localization (SBBFL) uses runtime control flow information (the
behavior) to identify groups of collaborating suspicious elements
[20]. These techniques leverage data mining techniques [5] such
as frequent [4, 7, 47] or significant pattern mining [20, 46]. When
significant patterns are mined metrics (such as statistical fault lo-
calization suspiciousness metrics) are used to identify the most
significant patterns [12, 20].

Finally, a variety of non-statistical (ormixedmethods) techniques
for fault localization have been explored [1–3, 44]. These range from
delta debugging [49] to nearest neighbor queries [38] to program
slicing [30, 42] to information retrieval [26, 31, 51] to test case
generation [10, 37, 39]. Despite differences in the technical and
theoretical approach of these alternate methods they also suggest
locations (or groups of locations) for the programmer to consider
when debugging.

2 EVALUATION METHODS
Some of the earliest papers in fault localization do not provide a
quantitative method for evaluating performance (as is seen in later
papers [36]). For instance, in the earliest CBSFL paper [22] (by Jones
et al.’s) the technique is evaluated using a qualitative visualization.
At the time, this was entirely appropriate as Jones was proposing a
technique for visualizing test coverage for assisting the debugging
process. The test coverage visualization was driven by what is
now called a statistical fault localization metric (Tarantula). The
evaluation visualization aggregated the visualizations all of the
programs included in the study.

While, the evaluation method used in the Jones paper effectively
communicated the potential of CBSFL (and got many researchers

2A basic block is a sequence of sequential instructions, always entered from the first
instruction and exited from the last [8].

How to Evaluate Statistical Fault Localization Tim A. D. Henderson

excited about the idea) it was not good way to compare multiple
fault localization techniques. In 2005 Jones and Harrold [23] con-
ducted a study which compared their Tarantula technique to 3 other
techniques: Set Union and Intersection [6], Nearest Neighbor [38],
and Cause-Transitions [14]. These techniques all took unique ap-
proaches toward the fault localization problem and were originally
evaluated in different ways. Jones and Harrold re-evaluated all 5
methods under a new common evaluation framework.

In the 2005 paper, Jones and Harrold evaluate the effectiveness of
each technique by using the technique to rank the statements in the
subject programs. Each technique ranked the statements from most
likely to be the cause of the fault to least likely. For Tarantula, the
statements are ranked using the Tarantula suspiciousness score:3

Definition 1 (Tarantula Rank Score [23]). Given a set of locations
L with their suspiciousness scores s(l) for l ∈ L the Rank Score for
a location l ∈ L is:

|{x : x ∈ L ∧ s(x) > s(l)}| + |{x : x ∈ L ∧ s(x) = s(l)}|

For Set Union and Intersection, Nearest Neighbor andCause-Transitions
the statements are ranked using a System Dependence Graph (SDG)
[21] technique from Renieres and Reiss [38] who first suggested
the ranking idea. The ranks are then used to calculate the Tarantula
Rank Score.

In the Jones and Harrold evaluation the authors do not use the
Tarantula Rank Score directly but instead use a version normalized
by program size:

Definition 2 (Tarantula Effectiveness Score (Expense) [23]). The
percentage of program elements that do not need to be examined
to find the fault when the elements are arranged according to their
rank. Formally: let n be the total number of program elements, and
let r (f) be the Tarantula Rank Score of the faulty element f then
the score is:

n − r (f)

n

Using the normalized effectiveness score Jones and Harrold directly
compare the fault localization effectiveness of each of the consid-
ered methods. They did this in two ways. First, they presented a
table (Table 2) which bucketed all the buggy versions form all the
programs by the percentage given by the Tarantula Effectiveness
Score. Second, they presented a figure (Figure 2) which showed the
data in Table 2 as a cumulative curve.

The basic evaluation method presented by Jones and Harrold
has become the standard evaluation method. Faulty statements
are scored, ranked, rank-scored, normalized, and then aggregated
over all versions and programs to provide an overall representation
of the fault localization method’s performance (a few examples:
[25, 29, 40, 41, 43, 50]). While the basic method has stayed fairly
consistent, there has been some innovation in the scoring (both the
Rank Score and the Effectiveness Scores).

For instance, Wong et al. [43] introduced the most commonly
used Effectiveness Score the EXAM score. This score is essentially

3 It is ahistorical to call Tarantula metric a suspiciousness score when referring to the
2002 paper [22]. Jones introduced the term suspiciousness score in the 2005 paper [23]
for the purpose of ranking the statements. However, the term is now in common use
and it was explained above.

the same as the Expense score except it gives the percentage of
elements which need to be examined rather than those avoided.

Definition 3 (EXAM Score [43]). The percentage of program
elements that need to be examined to find the fault when the ele-
ments are arranged according to their rank. Formally: let n be the
total number of program elements, and let r (f) be the Tarantula
Rank Score of the faulty element f then the score is:

r (f)

n

Ali et al. [9] identified an important problem with the Jones and
Harrold evaluation: some fault localization metrics and algorithms
rank statements equally. This is captured in the second term in
the definition for the Tarantula Rank Score. However, Ali points
out that this introduces bias towards algorithms that always assign
unique scores (that are close together) rather than those that would
score the same group of statement equally. The fix is to instead
compute the expected number of statements the programmer would
examine if they chose the next equally scored element at random.

Definition 4 (Rank Score). Gives the expected number of locations
a programmer would inspect before finding the bug. Formally, given
a set of locations L with their suspiciousness scores s(l) for l ∈ L
the Rank Score for a location l ∈ L is [9]:

|{x : x ∈ L ∧ s(x) > s(l)}| +
|{x : x ∈ L ∧ s(x) = s(l)}|

2
Following Ali, we recommend utilizing the above definition for
Rank Score over the Tarantula definition.

Parin and Orso [35] conducted a user study which looked at
the programmer experience of using a statistical fault localization
tool (Tarantula [22]). Among their findings they found that pro-
grammers would not look deeply through the list of locations and
would instead only consider the first few items. As a result they
encouraged studies to no longer report scores as percentages. While
some studies still report the percentages most studies are now re-
porting the absolute (non-percentage) rank scores. Reporting as
absolute scores is important for another reason, if percentage ranks
are reported larger programs can have much larger absolute ranks
for the same percentage rank. This biases the evaluation toward
large programs even when the actual localization result is poor.

Steimann et al. [40] identified a number of threats to validity in
CBSFL studies including: heterogeneous subject programs, poor
test suites, small sample sizes, unclear sample spaces, flaky tests,
total number of faults, and masked faults. For evaluation they used
the Rank Score modified to deal with k faults tied at the same rank.

Definition 5 (Steimann Rank Score). Gives the expected number
of locations a programmer would inspect before finding the bug
when multiple faulty statements have the same rank. Formally,
given a set of locations L with their suspiciousness scores s(l) for
l ∈ L the Rank Score for a location l ∈ L is [40]:

|{x : x ∈ L ∧ s(x) > s(l)}|

+
|{x : x ∈ L ∧ s(x) = s(l)}| + 1

|{x : x ∈ L ∧ s(x) = s(l) ∧ x is a faulty location}| + 1

Moon et al. [32] proposed Locality Information Loss (LIL) as an
alternative evaluation framework. LIL models the localization result

How to Evaluate Statistical Fault Localization Tim A. D. Henderson

as a probability distribution constructed from the suspiciousness
scores:

Definition 6 (LIL Probability Distribution). Let τ be a suspicious
metric normalized to the [0, 1] range of reals. Let n be the number
statements in the program. Let S be the set of statements. For all
1 ≤ i ≤ n let si ∈ S . The constructed probability distribution is:

Pτ (si) =
τ (si)∑n
j=1 τ (sj)

LIL uses a measure of distribution divergence (Kullback-Leibler)
to compute a score of how different the constructed distribution is
from the “perfect” expected distribution. The advantage of the LIL
framework is it does not depend on a list of ranked statements and
can be applied to non-statistical methods (using a synthetic τ). The
disadvantage of LIL is it does not indicate programmer effort (as
indicated by the Rank Score). However, it may be a better metric to
use when evaluating fault localization systems as a component for
automated bug repair systems.

Pearson et al. [36] re-evaluated a number of previous results
using new real world subject programs with real defects and test
suites. In contrast to previous work they made use of statistical
hypothesis testing and confidence intervals to test the significance
of the results. To evaluate the performance of each technique under
study they used the EXAM score reporting best, average, and
worst case results for multi-statement faults.

T-Score [27] is designed for non-statistical fault localization meth-
ods which produce a small set of suspicious statements in the pro-
gram. To evaluate how helpful these reports are T-Score uses the
Program Dependence Graph (PDG) [19, 21] to compute a set of
vertices in the graph that must be examined in order to reach any
faulty vertex. This set is computed via a breadth first search from
the set of vertices in the report. Finally, the score is computed as the
percentage of examined vertices out of the total number of vertices
in the graph.

3 MULTIPLE FAULT EVALUATIONS
With the exception of LIL, the evaluation methods discussed so far
are generally defined to operate with a single faulty location. How-
ever, there may be multiple faults or multiple locations associated
with a single fault or both. Multiple faults can interact [16] and
interfere with the performance of the fault localizer. For evaluation
purposes one of the most popular methods is to take either best
result [45], the average result [2, 34], or the worst result [45].

4 EVALUATING OTHER TECHNIQUES
One of the challenges with the methods presented so far is they may
not work well for evaluating alternate fault localization methods.
For instance, information retrieval based localization methods do
not necessarily score and rank every program location. Instead
they produce a report of associated regions. Jones and Harrold [23]
used a synthetic ranking system [38] based on the SDG [21] which
in principle could be used in such situation. However, like the T-
Score it uses an arbitrary method (minimal dependence spheres) to
compute the number of SDG nodes which must be examined.

The LIL method could also potentially be used to evaluate al-
ternative methods. It does not rely on ranking but instead on the

suspiciousness scores which it converts into a probability distribu-
tion. To support evaluating report based localization the reports
are converted to a probability distribution with all locations in the
report set to a equal high probability and all locations not in the
report set to a tiny probability.

Suspicious Behavior Based Fault Localization [20] requires partic-
ular care. These methods are produce a ranked set of “behaviors”
which are structured groups of interacting program locations. The
structure could be a call invocation structure [13, 15, 17, 28, 48], a
general control flow structure [12, 20, 33], or even an information
flow structure [18]. The structures are scored and ranked similar
to CBSFL. However, unlike in CBSFL all program locations are not
necessarily included. In the past, studies have used a variety of
techniques to evaluated the effectiveness including precision and
recall [12] and scores based off of the EXAM score [20].

Another subtle special case involves comparing statistical tech-
niques which operate on different granularity levels. As mentioned
previously, coverage can be collected at any granularity level: ex-
pression, statement, basic block, method or function, class, file, and
even non-structural elements such as paths. Any of the CBSFL met-
rics can be used with any of these granularities. However, a single
study using any of the previous evaluation methods must keep
the granularity consistent. This makes it impossible to compare
across granularity levels. This is makes it particularly difficult to
accurately compare method level behavioral approaches [28] to
CBSFL.

5 ASSUMPTIONS
The biggest assumption that all evaluation models make is so-called
perfect bug understanding which assumes programmers will rec-
ognize a bug as soon as they “examine” the faulty location. This
assumption is obviously false [35]. However, it continues to be
a useful simplifying assumption for evaluation purposes of the
localization algorithms. From the standpoint of automated fault
localization there are really two tasks: 1) finding the fault and 2)
explaining the fault. Assuming perfect bug understanding is reason-
able for evaluating a tools performance on task 1. However, there
is the important caveat that programmers need more assistance
at task 2. As a research community we do not currently have a
standard method for evaluating our algorithmic performance on
task 2.

The second assumption is that programmers will follow the rank
list or suspiciousness scores when debugging a program using a
fault localization tool. This assumption is obviously false as well
[35]. A programmer may follow the list for the very first item
and even the second but where they go from there is likely only
partially influenced by the list. The bigger influence will be from the
conclusions they are drawing fromwhat they learn upon inspecting
each location.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J C van Gemund. 2009. A

practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780–1792. https://doi.org/10.1016/j.jss.2009.06.035

[2] Rui Abreu, Peter Zoeteweij, and Arjan Van Gemund. 2006. An Evaluation of
Similarity Coefficients for Software Fault Localization. In 2006 12th Pacific Rim
International Symposium onDependable Computing (PRDC’06). IEEE, 39–46. https:
//doi.org/10.1109/PRDC.2006.18

https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18

How to Evaluate Statistical Fault Localization Tim A. D. Henderson

[3] Pragya Agarwal and Arun Prakash Agrawal. 2014. Fault-localization Techniques
for Software Systems: A Literature Review. SIGSOFT Softw. Eng. Notes 39, 5 (sep
2014), 1–8. https://doi.org/10.1145/2659118.2659125

[4] Charu C. Aggarwal, Mansurul A. Bhuiyan, and Mohammad Al Hasan. 2014.
Frequent Pattern Mining Algorithms: A Survey. In Frequent Pattern Min-
ing. Springer International Publishing, Cham, 19–64. https://doi.org/10.1007/
978-3-319-07821-2_2

[5] Charu C. Aggarwal and Jiawei Han (Eds.). 2014. Frequent Pattern Mining. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-319-07821-2

[6] Hiralal Agrawal, J.R. Horgan, Saul London, and W.E. Wong. 1995. Fault localiza-
tion using execution slices and dataflow tests. In Proceedings of Sixth International
Symposium on Software Reliability Engineering. ISSRE’95. IEEE Computer Society,
143–151. https://doi.org/10.1109/ISSRE.1995.497652

[7] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association
rules between sets of items in large databases. ACM SIGMOD Record 22, 2 (jun
1993), 207–216. https://doi.org/10.1145/170036.170072

[8] Alfred Aho, Ravi Sethi, Monica S. Lam, and Jeffery D. Ullman. 2007. Compilers:
principles, techniques, and tools.

[9] Shaimaa Ali, James H. Andrews, Tamilselvi Dhandapani, and Wantao Wang.
2009. Evaluating the Accuracy of Fault Localization Techniques. 2009 IEEE/ACM
International Conference on Automated Software Engineering (2009), 76–87. https:
//doi.org/10.1109/ASE.2009.89

[10] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. 2010. Directed Test
Generation for Effective Fault Localization. In Proceedings of the 19th international
symposium on Software testing and analysis (ISSTA ’10). ACM, New York, NY,
USA, 49–60. https://doi.org/10.1145/1831708.1831715

[11] G.K. George K Baah, Andy Podgurski, and Mary Jean M.J. Harrold. 2010. Causal
inference for statistical fault localization. In Proceedings of the 19th international
symposium on Software testing and analysis (ISSTA ’10). ACM, New York, NY,
USA, 73–84. https://doi.org/10.1145/1831708.1831717

[12] Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, and Xifeng Yan. 2009. Identi-
fying Bug Signatures Using Discriminative Graph Mining. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis (ISSTA ’09).
ACM, New York, NY, USA, 141–152. https://doi.org/10.1145/1572272.1572290

[13] Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V Nori, and Kapil Vaswani.
2009. HOLMES: Effective Statistical Debugging via Efficient Path Profiling. In
Proceedings of the 31st International Conference on Software Engineering (ICSE ’09).
IEEE Computer Society, Washington, DC, USA, 34–44. https://doi.org/10.1109/
ICSE.2009.5070506

[14] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures.
Proceedings of the 27th international conference on Software engineering - ICSE ’05
(2005), 342. https://doi.org/10.1145/1062455.1062522

[15] Themistoklis Diamantopoulos and Andreas Symeonidis. 2014. Localizing Soft-
ware Bugs using the Edit Distance of Call Traces. International Journal on
Advances in Software 7, 1 & 2 (2014), 277–288.

[16] Nicholas DiGiuseppe and James A. Jones. 2011. On the influence of multiple
faults on coverage-based fault localization. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis - ISSTA ’11. ACM, 210. https:
//doi.org/10.1145/2001420.2001446

[17] Frank Eichinger, Klemens Böhm, and Matthias Huber. 2008. Mining Edge-
Weighted Call Graphs to Localise Software Bugs. In European Conference Machine
Learning and Knowledge Discovery in Databases, Walter Daelemans, Bart Goethals,
and Katharina Morik (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 333–
348. https://doi.org/10.1007/978-3-540-87479-9_40

[18] Frank Eichinger, Klaus Krogmann, Roland Klug, and Klemens Böhm. 2010.
Software-defect Localisation by Mining Dataflow-enabled Call Graphs. In Pro-
ceedings of the 2010 European Conference on Machine Learning and Knowledge
Discovery in Databases: Part I (ECML PKDD’10). Springer-Verlag, Berlin, Heidel-
berg, 425–441.

[19] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. , 319–349 pages. https://doi.org/
10.1145/24039.24041

[20] Tim A D Henderson and Andy Podgurski. 2018. Behavioral Fault Localization by
Sampling Suspicious Dynamic Control Flow Subgraphs. In IEEE Conference on
Software Testing, Validation and Verification. IEEE, Västerås, Sweden.

[21] Susan Horwitz. 1990. Identifying the Semantic and Textual Differences Between
Two Versions of a Program. SIGPLAN Not. 25, 6 (jun 1990), 234–245. https:
//doi.org/10.1145/93548.93574

[22] J.a. Jones, M.J. Harrold, and J. Stasko. 2002. Visualization of test information
to assist fault localization. Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002 (2002). https://doi.org/10.1145/581339.581397

[23] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’05). ACM, New
York, NY, USA, 273–282. https://doi.org/10.1145/1101908.1101949

[24] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis - ISSTA 2016. ACM Press, New

York, New York, USA, 165–176. https://doi.org/10.1145/2931037.2931051
[25] David Landsberg, Hana Chockler, Daniel Kroening, and Matt Lewis. 2015.

Evaluation of Measures for Statistical Fault Localisation and an Optimising
Scheme. In International Conference on Fundamental Approaches to Software En-
gineering (Lecture Notes in Computer Science), Alexander Egyed and Ina Schae-
fer (Eds.), Vol. 9033. Springer Berlin Heidelberg, Berlin, Heidelberg, 115–129.
https://doi.org/10.1007/978-3-662-46675-9

[26] Tien-Duy B Le, Richard J Oentaryo, and David Lo. 2015. Information retrieval and
spectrum based bug localization: better together. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. ACM Press,
New York, New York, USA, 579–590. https://doi.org/10.1145/2786805.2786880

[27] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: Detection of
Software Plagiarism by Program Dependence Graph Analysis. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’06). ACM, New York, NY, USA, 872–881. https://doi.org/10.1145/
1150402.1150522

[28] Chao Liu, Hwanjo Yu, Philip S Yu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and
Philip S Yu. 2005. Mining Behavior Graphs for âĂĲBacktraceâĂİ of Noncrashing
Bugs. In Proceedings of the 2005 SIAM International Conference on Data Mining.
Society for Industrial and Applied Mathematics, 286–297. https://doi.org/10.
1137/1.9781611972757.26

[29] Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. 2014. Extended
comprehensive study of association measures for fault localization. Journal of
Software: Evolution and Process 26, 2 (feb 2014), 172–219. https://doi.org/10.1002/
smr.1616

[30] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014.
Slice-based statistical fault localization. Journal of Systems and Software 89, 1
(2014), 51–62. https://doi.org/10.1016/j.jss.2013.08.031

[31] Andrian Marcus, Andrey Sergeyev, Václav Rajlieh, and Jonathan I. Maletic. 2004.
An information retrieval approach to concept location in source code. Proceedings
- Working Conference on Reverse Engineering, WCRE (2004), 214–223. https:
//doi.org/10.1109/WCRE.2004.10

[32] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
Mutants: Mutating faulty programs for fault localization. Proceedings - IEEE 7th
International Conference on Software Testing, Verification and Validation, ICST
2014 (2014), 153–162. https://doi.org/10.1109/ICST.2014.28

[33] Zaynab Mousavian, Mojtaba Vahidi-Asl, and Saeed Parsa. 2011. Scalable Graph
Analyzing Approach for Software Fault-localization. In Proceedings of the 6th
International Workshop on Automation of Software Test (AST ’11). ACM, New York,
NY, USA, 15–21. https://doi.org/10.1145/1982595.1982599

[34] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on Software Engineering and Method-
ology 20, 3 (2011), 1–32. https://doi.org/10.1145/2000791.2000795

[35] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Techniques
Actually Helping Programmers?. In ISSTA. ISSTA, 199–209.

[36] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving
Fault Localization. In Proceedings of the 39th International Conference on Soft-
ware Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 609–620. https:
//doi.org/10.1109/ICSE.2017.62

[37] Alexandre Perez, Rui Abreu, and André Riboira. 2014. A Dynamic Code Coverage
Approach to Maximize Fault Localization Efficiency. J. Syst. Softw. 90 (apr 2014),
18–28. https://doi.org/10.1016/j.jss.2013.12.036

[38] Manos Renieres and S.P. Reiss. 2003. Fault localization with nearest neighbor
queries. In 18th IEEE International Conference on Automated Software Engineering,
2003. Proceedings. IEEE Comput. Soc, 30–39. https://doi.org/10.1109/ASE.2003.
1240292

[39] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. 2013.
Using likely invariants for automated software fault localization. In Proceedings
of the eighteenth international conference on Architectural support for programming
languages and operating systems, Vol. 41. ACM Press, New York, New York, USA,
139. https://doi.org/10.1145/2451116.2451131

[40] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. Proceedings of the 2013 International Symposium on Software Testing and
Analysis - ISSTA 2013 (2013), 314. https://doi.org/10.1145/2483760.2483767

[41] Shih-Feng Sun and Andy Podgurski. 2016. Properties of Effective Metrics for
Coverage-Based Statistical Fault Localization. In 2016 IEEE International Con-
ference on Software Testing, Verification and Validation (ICST). IEEE, 124–134.
https://doi.org/10.1109/ICST.2016.31

[42] Frank Tip. 1995. A survey of program slicing techniques. Journal of programming
languages 3, 3 (1995), 121–189.

[43] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. 2008. A Crosstab-based Sta-
tistical Method for Effective Fault Localization. In 2008 International Confer-
ence on Software Testing, Verification, and Validation. IEEE, 42–51. https:
//doi.org/10.1109/ICST.2008.65

https://doi.org/10.1145/2659118.2659125
https://doi.org/10.1007/978-3-319-07821-2_2
https://doi.org/10.1007/978-3-319-07821-2_2
https://doi.org/10.1007/978-3-319-07821-2
https://doi.org/10.1109/ISSRE.1995.497652
https://doi.org/10.1145/170036.170072
https://doi.org/10.1109/ASE.2009.89
https://doi.org/10.1109/ASE.2009.89
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1145/1831708.1831717
https://doi.org/10.1145/1572272.1572290
https://doi.org/10.1109/ICSE.2009.5070506
https://doi.org/10.1109/ICSE.2009.5070506
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/2001420.2001446
https://doi.org/10.1145/2001420.2001446
https://doi.org/10.1007/978-3-540-87479-9_40
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/93548.93574
https://doi.org/10.1145/93548.93574
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1007/978-3-662-46675-9
https://doi.org/10.1145/2786805.2786880
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1137/1.9781611972757.26
https://doi.org/10.1137/1.9781611972757.26
https://doi.org/10.1002/smr.1616
https://doi.org/10.1002/smr.1616
https://doi.org/10.1016/j.jss.2013.08.031
https://doi.org/10.1109/WCRE.2004.10
https://doi.org/10.1109/WCRE.2004.10
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1145/1982595.1982599
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1016/j.jss.2013.12.036
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1145/2451116.2451131
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1109/ICST.2016.31
https://doi.org/10.1109/ICST.2008.65
https://doi.org/10.1109/ICST.2008.65

How to Evaluate Statistical Fault Localization Tim A. D. Henderson

[44] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (aug 2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[45] W. Eric Wong, Yu Qi, Lei Zhao, and Kai Yuan Cai. 2007. Effective fault local-
ization using code coverage. Proceedings - International Computer Software and
Applications Conference 1, Compsac (2007), 449–456. https://doi.org/10.1109/
COMPSAC.2007.109

[46] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S Yu. 2008. Mining Significant
Graph Patterns by Leap Search. In Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’08). ACM, New York, NY,
USA, 433–444. https://doi.org/10.1145/1376616.1376662

[47] Xifeng Yan and Jiawei Han. 2002. gSpan: graph-based substructure pattern
mining. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings.
IEEE Comput. Soc, 721–724. https://doi.org/10.1109/ICDM.2002.1184038

[48] Anis Yousefi and Alan Wassyng. 2013. A Call Graph Mining and Matching
Based Defect Localization Technique. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops. IEEE, 86–95. https:
//doi.org/10.1109/ICSTW.2013.17

[49] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?
SIGSOFT Softw. Eng. Notes 24, 6 (oct 1999), 253–267. https://doi.org/10.1145/
318774.318946

[50] Yan Zheng, Zan Wang, Xiangyu Fan, Xiang Chen, and Zijiang Yang. 2018. Local-
izing multiple software faults based on evolution algorithm. Journal of Systems
and Software 139 (2018), 107–123. https://doi.org/10.1016/j.jss.2018.02.001

[51] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be
fixed? More accurate information retrieval-based bug localization based on bug
reports. Proceedings - International Conference on Software Engineering (2012),
14–24. https://doi.org/10.1109/ICSE.2012.6227210

https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1145/1376616.1376662
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1109/ICSTW.2013.17
https://doi.org/10.1109/ICSTW.2013.17
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/318774.318946
https://doi.org/10.1016/j.jss.2018.02.001
https://doi.org/10.1109/ICSE.2012.6227210

	1 Introduction
	2 Evaluation Methods
	3 Multiple Fault Evaluations
	4 Evaluating Other Techniques
	5 Assumptions
	References

