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I would also like to acknowledge Tekin Özsoyoglu who first encouraged me and supported
me with a GAANN Fellowship. Vincenzo Liberatore gave me my first teaching position by
placing me in charge of the practical portion of the Software Craftsmanship course. Ken
Loparo also believed in me allowing me the privilege of teaching Compiler Design and
Implementation. Teaching this course lead to my renewed interest in my research and
opened up new avenues of exploration.

I would like to acknowledge my committee members: Soumya Ray, Harold Connamacher,
and Gurkan Bebek. Each of you have given me thoughtful advice and support through
my years at CWRU. Finally, I would like to thank my research advisor Andy Podgurski.
Through thick and sometimes thin you have continued to believe in me and my work. Your
thoughtful guidance has kept me on the straight and narrow. Without your gentle nudges
and suggestions my wandering mind would’ve whisked me toward the bogs of folly. This
work was difficult for me and I could not have done it without your support.

v



Frequent Subgraph Analysis and its Software Engineering Applications

Abstract

by

TIM A. D. HENDERSON

Frequent subgraph analysis is a class of techniques and algorithms to find repeated
sub-structures in graphs known as frequent subgraphs or graph patterns. In the field of
Software Engineering, graph pattern discovery can help detect semantic code duplication,
locate the root cause of bugs, infer program specifications, and even recommend intelligent
auto-complete suggestions. Outside of Software Engineering, discovering graph patterns
has enabled important applications in personalized medicine, computer aided drug design,
computer vision, and multimedia.

As promising as much of the previous work in areas such as semantic code duplication
detection has been, finding all of the patterns in graphs of a large program’s code has
previously proven intractable. Part of what makes discovering all graphs patterns in a
graph of a large program difficult is the very large number of frequent subgraphs contained in
graphs of large programs. Another impediment arises when graphs contain frequent patterns
with many automorphisms and overlapping embeddings. Such patterns are pathologically
difficult to mine and are found in real programs.

I present a family of algorithms and techniques for frequent subgraph analysis with two
specific aims. One, address pathological structures. Two, enable important software engi-
neering applications such as code clone detection and fault localization without analyzing
all frequent subgraphs. The first aim is addressed by novel optimizations making the sys-
tem faster and more scalable than previously published work on both program graphs and
other difficult to mine graphs. The second aim is addressed by new algorithms for sam-
pling, ranking, and grouping frequent patterns. Experiments and theoretical results show
the tractability of these new techniques.

The power of frequent subgraph mining in Software Engineering is demonstrated with
studies on duplicate code (code clone) identification and fault localization. Identifying
code clones from program dependence graphs allows the identification of potential semantic
clones. The proposed sampling techniques enable tractable dependence clone identification
and analysis. Fault localization identifies potential locations for the root cause of bugs in
programs. Frequent substructures in dynamic program behavior graphs to identify sus-
pect behaviors which are further isolated with fully automatic test case minimization and
generation.
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Chapter 1

Introduction

Frequent subgraph analysis (FSA) is a family of techniques to discover recurring subgraphs
in graph databases. The databases can either be composed of many individual graphs or
a single large connected graph. This dissertation discusses my contributions to frequent
subgraph analysis and applies the technique to address two pressing problems in software
engineering: code clone detection and automatic fault localization.

The work on frequent subgraph analysis was motivated by the software engineering prob-
lems. Large programs are composed of repeated patterns arising organically through the
process of program construction. Some regions of programs are duplicated (intentionally
or unintentionally). The duplicated regions are referred to as code clones (or just clones).
Other regions are similar to each other because they perform similar tasks or share devel-
opment histories.

Code clones may arise from programmers copying and pasting code, from limitations of
a programming language, from using certain APIs, from following coding conventions, or
from a variety of other causes. Whatever their causes, the existing clones in a code base
need to be managed. When a programmer modifies a region of code that is cloned in another
location in the program they should make an active decision whether or not to modify the
other location. Clearly, such decisions can only be made if the programmer is aware of the
other location.

One type of duplication which is particularly difficult to detect is so called Type-4 clones
or semantic clones. Semantic clones are semantically equivalent regions of code which may
or may not be textually similar. Differences could be small changes such as different variable
names or large changes such as a different algorithms which perform the same function. In
general identifying semantically equivalent regions is undecidable as a reduction from the
halting problem.

Frequent subgraph analysis (FSA) can be used to identify some Type-4 clones (as well
as easier to identify clone classes). I use FSA to analyze a graphical representation of
the program called the Program Dependence Graph (PDG) [46]. Dependence graphs strip
away syntactic information and focus on the semantic relationships between operations.
Non-semantic re-orderings of operations in a program do not effect the structure of its
dependence graph [64, 113, 114]. Since PDGs are not sensitive to unimportant syntactic
changes some of the Type-4 clones in a program may be identified with FSA.

The other motivating application I applied FSA to is automatic fault localization. When
programs have faults, defects, or bugs it is often time consuming and sometimes difficult

1



CHAPTER 1. INTRODUCTION

to find the cause of the bug. To address this the software engineering community has been
working on a variety of techniques for automatic fault localization. The family of statistical
fault localization techniques analyzes the behavior of the program when the faults manifest
and when they do not. These techniques then identify statistical associations between
execution of particular program elements and the occurrence of program failures.

While statistical measures can identify suspicious elements of a program they are blind
to the relationships between the elements. If program behavior is modeled through Dynamic
Control Flow Graphs, then execution relationships between operations can be analyzed us-
ing FSA to identify suspicious interactions. These suspicious interactions represent larger
behaviors of the program which are statistically associated with program failure. The behav-
iors serve as a context of interacting suspicious program elements which potentially makes
it easier for programmers to comprehend localization results.

Much of the previous work in frequent subgraph analysis has focused on finding all of the
frequent subgraphs in a graph database (called frequent subgraph mining [71]). I have shown
that finding all of the frequent subgraphs in a database of graphs is not an efficient or effective
way to either detect code clones or automatically localize faults. Program dependence graphs
of large programs have huge numbers of recurring subgraphs. Experiments on a number
of open source projects (see Chapter 4) showed that moderately sized Java programs (∼70
KLOC) have more than a hundred of million subgraphs that recur five or more times. Mining
all recurring subgraphs is an impractical way to either identify code clones or localize faults.

Furthermore, it turns out that program dependence graphs are particularly difficult to
analyze for recurring subgraphs. These graphs often have certain structures which contain
many automorphisms. A structure with an automorphism can be rotated upon itself. Each
rotation appears to be a recurrence to traditional frequent subgraph mining algorithms.
However, because it is merely a rotation, humans (e.g. programmers) do not perceive these
rotations as instances of duplication.

To enable scalable frequent subgraph analysis of large programs new techniques were
needed. I developed novel optimizations for mining frequent subgraphs and created a state
of the art miner (REGRAX) for connected graphs (Chapter 3). To detect code clones from
program dependence graphs, I developed an algorithm (GRAPLE) to collect a represen-
tative sample of recurring subgraphs (Chapter 4). Finally, a new algorithm (SWRW) was
created for localizing faults from dynamic control flow graphs, which outperforms previous
algorithms (Chapter 6).

REGRAX contains low level optimizations to the process of identifying frequent sub-
graphs. Chapter 2 provides the necessary background on frequent subgraph mining for un-
derstanding these optimizations. An extensive empirical study was conducted on REGRAX
to quantify the effect of each of the new optimizations on databases from the SUBDUE
corpus [27], on program dependence graphs, and on random graphs.

GRAPLE is a new algorithm to sample a representative set of frequent subgraphs and es-
timate statistics characterizing properties of the set of all frequent subgraphs. The sampling
algorithm uses the theory of absorbing Markov chains to model the process of extracting
recurring subgraphs from a large connected graph. By sampling a representative set of re-
curring subgraphs GRAPLE is able to conduct frequent subgraph analysis on large programs
which normally would not be amenable to such analysis.

One of the questions in code clone detection is: “are code clones detected from program
dependence graphs understandable to programmers?” GRAPLE was used to answer this
question, as it not only collects a sample of frequent subgraphs but allows researchers to esti-
mate the prevalence of features across the entire population of frequent subgraphs (including

2



CHAPTER 1. INTRODUCTION

those which were not sampled). Chapter 4 details a case study which was conducted at a
software company to determine whether their programmers could make use of code clones
detected from program dependence graphs. The study would not have been possible without
the estimation framework in GRAPLE, as the software contained too many code clones to
be reviewed in the allocated budget.

To apply frequent subgraph analysis to automatic fault localization, a new algorithm
named Score Weighted Random Walks (SWRW) was developed. SWRW samples discrimi-
native, suspicious, or significant subgraphs from a database of graphs. The database is split
into multiple classes where some graphs are labeled “positive” and others “negative.” In
fault localization the “positive” graphs were those dynamic control flow graphs collected
from program executions which exhibited a failure of some type. The “negative” graphs are
from executions which did not fail.

SWRW, like GRAPLE, models the problem using the theory of absorbing Markov chains.
Unlike GRAPLE, it uses an objective function (drawn from the statistical fault localization
literature [99]) to guide the sampling process. In comparison to previous work in fault
localization using graph mining, a much wider variety of objective functions can applied.
This allows for functions better suited to statistical fault localization to be used as the
objective function. SWRW outperforms previous approaches which used discriminative
mining to localize faults in terms of fault localization accuracy.

Summary This dissertation makes important and novel contributions to frequent sub-
graph analysis which enable scalable semantic code clone detection and behavioral fault
localization. These advances can help programmers maintain their software more efficiently
leading to more stable and secure software for everyone. The software engineering advances
are built on new frequent subgraph analysis algorithms. The new algorithms improve code
clone detection time, fault localization latency and accuracy, and enable analysis of larger
and more complex programs.

3



Chapter 2

An Introduction to Frequent
Subgraph Analysis

Frequent subgraph mining is the process of identifying recurring sub-structures in graphical
databases [25]. The database may either be a collection of small graphs or a single large
graph. Figure 2.1 shows an example. On the right side of the figure is the “database of
graphs” which contains three undirected unlabeled graphs. On the left side is a triangle
graph which is a subgraph of all three graphs in the database. Thus, the triangle graph
recurs three times in the database and is a 3-frequent subgraph.

The goal of frequent subgraph mining is to discover all subgraphs of graphs in the
database which recur at least k times. The parameter k is called the minimum support. A
subgraph is considered “frequent” (and supported) if it recurs at least k times. When the
database is a collection of small graphs the notion of recurrence (or support) is a straightfor-
ward one: a graph has support n if it is a subgraph of n graphs in the database. However,
as we shall see, the concept of support is more subtle in when analyzing a single large graph.

2.1 Formal Definitions

A graph G = (V,E) consists of a set of vertices V and edges E ⊆ V × V . If (u, v) ∈ E
then there is an edge between the vertices (or nodes) u and v. If a graph is undirected then
(u, v) ∈ E implies that (v, u) ∈ E. However, if (u, v) ∈ E does not imply (v, u) ∈ E the
graph is said to be directed. A labeled graph (either directed or undirected) has an additional
component: a labeling function l which maps vertices and/or edges to a set of labels L. In
this work, the focus will be on labeled directed graphs (called labeled digraphs) as the primary

Figure 2.1: The triangle graph on the left recurs in each of the graphs shown on the right.
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Param: Database of labeled digraphs D
Param: Minimum support k
Result: Set of k-frequent subgraphs S

1 for all candidate subgraphs H, H may be a subgraph of some G ∈ D do
2 if |{G : G ∈ D ∧H v G}| ≥ k then
3 Add H to S
4 end

5 end
6 return S

Algorithm 1: High-level overview of k-Frequent Subgraph Mining.

software engineering applications involve labeled digraphs. Some of the examples (such as
Figure 2.1) will utilize undirected graphs for simplicity.

Definition 2.1 (Subgraph Isomorphism). Given labeled digraphs H and G, an injective
mapping m : VH → VG is a subgraph isomorphism when:

1. m maps each vertex in H to a vertex in G with the same label: ∀ v ∈ VH [lH(v) =
lG(m(v))]

2. m preserves edges:
∀ u, v ∈ VH [(u, v) ∈ EH ⇔ (m(u),m(v)) ∈ EG]

3. m preserves edge labels:
∀ (u, v) ∈ EH [lH(u, v) = lG(m(u),m(v))]

If there is a subgraph isomorphism m between H and G then H is a subgraph of G,
denoted H v G. A subgraph isomorphism from H into G is called an embedding of H in
G. The set of all of subgraph isomorphisms from H into G is denoted by JHKG.

Definition 2.2 (k-Frequent Subgraph Mining a Database D).
Given a minimum frequency level k > 1 and a set of labeled digraphs D find all digraphs H
such that |{G : G ∈ D ∧H v G}| ≥ k.

A graph H which is a subgraph of at least k graphs in D is called a k-frequent subgraph.
Algorithm 1 gives a very high level overview of the process all frequent subgraph mining
algorithms follow. Line 1 enumerates all potentially frequent subgraphs (called candidate
frequent subgraphs of graphs in the database D. Line 2 then counts the support of the
current subgraph H in the database D. If the graph H is frequent in the database it is
added to the set of frequent subgraphs on Line 3. In order to efficiently mine frequent
subgraphs careful implementations of Lines 1 and 2 will need to be constructed.

Line 1 in Algorithm 1 enumerates candidate frequent subgraphs. This enumeration can
be viewed as a traversal of a conceptual structure called the k-frequent connected subgraph
lattice. The lattice is a special graph where the nodes (vertices) of the lattice represent k-
frequent subgraphs and the edges connect the nodes to their direct supergraphs or subgraphs.
The k-frequent connected subgraph lattice is a subgraph of the connected subgraph lattice.

Definition 2.3 (Connected Subgraph Lattice of D). The subgraph relation · v · induces the
Connected Subgraph Lattice LD representing all the possible ways of constructing the graphs
in D from the empty subgraph by adding one edge at a time. LD is a digraph where each
vertex u represents a unique connected (ignoring edge direction) subgraph of some G ∈ D.

5
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(a) A colored (labeled) digraph. (b) A 2-frequent connected subgraph lattice.

Figure 2.2: Figure (b) is a connected subgraph lattice of the graph in Figure (a) including only the subgraphs
with 2 or more embeddings in Figure (a). The boxed nodes in the graph show the embeddings of the boxed
subgraph in the lattice. In the figure, the colors (black, gray, and white) are standing in for labels on the
vertices.

There is an edge from u to v in LD if adding some edge ε to u creates a subgraph u + ε
isomorphic to v, v ∼= u+ ε.

Definition 2.4 (k-Frequent Connected Subgraph Lattice of D). A k-Frequent Connected
Subgraph Lattice k-LD is a connected subgraph lattice containing only those subgraphs which
appear in least k graphs in D.

The goal of k-frequent subgraph mining is to discover all of the vertices of the k-LD.

2.2 Key Problems in Frequent Subgraph Mining

At a high level all frequent subgraph mining algorithms are traversals of the k-frequent
connected subgraph lattice of the database of graphs D. All methods start from the empty
subgraph and propose candidate subgraphs of G that might be frequent, check their support
and propose further, larger candidate subgraphs until all vertices of the lattice have been
found. We will consider four major sub-problems:

1. Subgraph enumeration order
2. Support computation
3. Generation of candidate subgraphs
4. Elimination of duplicate subgraphs

2.2.1 Subgraph Enumeration

Figure 2.2 shows an example of a k-frequent subgraph lattice k-LG for a single connected
graph. Frequent subgraph mining discovers the vertices of the lattice starting from an
empty subgraph. Algorithms propose candidate subgraphs by enlarging known frequent
subgraphs which are previously discovered lattice nodes. This amounts to an implicit or
explicit traversal of the lattice.

The question then arises: what is the best order in which to discover nodes in the lattice.
Broadly, there are two options breadth first search and depth first search. In the breadth
first approach [71] lattice nodes are enumerated level by level. All subgraphs of one size are
examined before examining subgraphs of a larger size. In the depth first approach [151] the
enumeration follows the pattern of a depth first search over the lattice. Larger and larger

6



CHAPTER 2. AN INTRODUCTION TO FREQUENT SUBGRAPH ANALYSIS

subgraphs are considered each time until there is no larger subgraph to consider. Then the
algorithms backtrack to the next largest subgraph not yet examined.

When traversing the frequent subgraph lattice in a breadth first manner all nodes which
represent subgraphs of a particular size must be held in memory at the same time. When
lattices are much wider than they are deep (a common occurrence in many applications)
this requires a large amount of memory. In contrast depth first traversal only needs to
hold in memory the longest path in the lattice from root to edge. Even if the lattice is
extremely deep a maximum number of edges could be specified making the depth first
traversal practical. In contrast, there is no simple limitation or “fix” which allows breadth
first miners to proceed when mining very broad lattices.

2.2.2 Support Computation

There are two approaches for computing the support of a candidate frequent subgraph.
The first is to conduct subgraph isomorphism tests on each graph in the database until
either the minimum support threshold k is reached or k cannot be reached [151]. The
problem of finding a subgraph isomorphism mapping from a graph H into a graph G is
NP-Complete [29]. If the graphs in question are labeled and not too many of the vertices
share labels solving the subgraph isomorphism problem is not difficult. However, it does
require building an index on the database which maps labels to vertices in each graph.

The second approach is to store all the embeddings (subgraph isomorphism mappings)
for each frequent subgraph [18]. Then when a candidate subgraph is constructed, the list of
embeddings of the candidate’s subgraphs can be used to find all of the embeddings of the
candidate without conducting expensive subgraph isomorphism tests. This approach works
is much faster than the search approach when the total number of embeddings is small.
However, if the total number is very large (and much larger than the minimum support
threshold k) then conducting the explicit subgraph isomorphism tests is more advantageous.

2.2.3 Candidate Subgraph Generation

There are three approaches for creating candidate subgraphs. All of the approaches con-
struct candidates by enlarging known frequent subgraphs. It is conceivable for an algorithm
to blindly generate candidates by enumerating all possible subgraphs of the graphs in the
database. However, the number of subgraphs of a graph is exponential to the size of the
graph. Creating the candidates from previously discovered frequent subgraphs significantly
prunes the search space (assuming most subgraphs are not frequent).

The first approach (inspired by the Apriori algorithm [5] for frequent itemset mining) is
to join together two frequent subgraph with n− 1 edges to form candidate subgraphs with
n edges [66,71]. The join operation may or may not produce graphs which are subgraphs of
any graph in the database. These spurious candidates must be detected and filtered when
counting the support. Any spurious candidate adds extra work so it is best to reduce the
number of spurious candidates.

The second approach adds a single, frequent edge (and sometimes a vertex) to a known
frequent subgraph [86]. The algorithms which take this approach pre-compute all of the
frequent edges in the database to support this candidate generation strategy. Like the first
approach, this approach may produce spurious candidates. However, it avoids the costly
join operation which involves computing the overlap between two graphs.

7
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The third approach adds a single, frequent edge (and sometimes a vertex) to a known
frequent subgraph where the edge is found by consulting the embeddings of the known
frequent subgraph [18]. This approach never computes spurious candidates as all candidates
are computed by extending embeddings. This approach works well when the algorithm stores
lists of embeddings instead of using subgraph isomorphism testing for support computation.

2.2.4 Elimination of Duplicate Subgraphs

As shown in Figure 2.2 most frequent subgraphs can be constructed in multiple ways.
Thus, during a traversal of the frequent subgraph lattice it is important to detect when a
particular node (subgraph) has been previously encountered. The most obvious approach to
this problem is to conduct explicit graph isomorphism tests on all of the frequent subgraphs
so far discovered.

Definition 2.5 (Graph Isomorphism). Given labeled digraphs G1 and G2, a bijective
mapping m : VG1

7→ VG2
is a graph isomorphism when:

1. m maps each vertex in G1 to a vertex in G2 with the same label:
∀ v ∈ VG1 [lG1(v) = lG2(m(v))]
∀ v ∈ VG2 [lG2(v) = lG1(m−1(v))]

2. m preserves edges:
∀ u, v ∈ VG1

[(u, v) ∈ EG1
⇔ (m(u),m(v)) ∈ EG2

]
∀ u, v ∈ VG2

[(u, v) ∈ EG2
⇔ (m−1(u),m−1(v)) ∈ EG1

]
3. m preserves edge labels:
∀ (u, v) ∈ EG1 [lG1(u, v) = lG2(m(u),m(v))]
∀ (u, v) ∈ EG2

[lG2
(u, v) = lG1

(m−1(u),m−1(v))]

The exact computational complexity class of the problem of finding the bijective graph
isomorphism mappings is unknown. Graph isomorphism is in the class NP, as given a
mapping m it obviously takes a polynomial number of steps to check (using the above
definition) whether the mapping is a valid graph isomorphism mapping. However, it is
currently unclear whether or not graph isomorphism is NP-Hard (and thus NP-Complete)
[101]. On the whole, it is thought that graph isomorphism is not NP-Hard. László Babai
has some important preliminary work showing graph isomorphism may be solvable in quasi-
polynomial time [14]. However, Babai’s work has not yet been fully vetted (one problem
has been found and fixed so far) and it is too early to draw conclusions. Whatever the exact
computational complexity class graph isomorphism belongs to, practical graph isomorphism
algorithms such as nauty, saucy, bliss, and traces can all effectively solve the problem for a
wide variety of real world graphs [101].

Conducting explicit graph isomorphism tests for every candidate subgraph against all
graphs so far considered is prohibitively expensive. It is too expensive even if graph iso-
morphism was an “easy” problem. A graph has an exponential (in the size of the graph)
number of subgraphs. Thus, as the mining process proceeds performing graph isomorphism
tests will dominate the execution time of the algorithm.

A better way to check if a candidate subgraph has already been processed is to use
canonical ordering [101]. The canonical order for a graph G is an ordering on the vertices V
and the edges E such that all graphs which are isomorphic to G will have the same canonical
ordering on their vertices and edges. Once two graphs have been placed in a canonical
order the graph isomorphism problem can be solved in linear time by checking for a one-
to-one correspondence between the ordered vertices and edges. All of the practical graph

8
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1 Procedure ExtendFSGwithFreqEdges(D, k, H)
Param: Database of labeled digraphs D
Param: Minimum support k
Param: Known frequent subgraph H = (VH , EH , lH)
Result: Set of candidate frequent subgraphs C

2 for v ∈ VH do
3 for ε = (u,w) ∈ EG ∧G ∈ D ∧ |{g : G ∈ D ∧ e ∈ Vg}| ≥ k ∧ lH(v) = lG(u) do
4 let c = H + ε;
5 Add c to C
6 end
7 for ε = (u,w) ∈ EG ∧G ∈ D ∧ |{g : G ∈ D ∧ e ∈ Vg}| ≥ k ∧ lH(v) = lG(w) do
8 let c = H + ε;
9 Add c to C

10 end

11 end
12 return C

Algorithm 2: Create all one edge extensions of a known frequent subgraph H.

isomorphism algorithms (nauty, saucy, bliss, and traces [101]) can compute the canonical
orderings.

Once a graph has been placed in canonical order a canonical labeling for the graph can
be computed [101]. The label is a string (sometimes called a certificate) which uniquely
identifies the graph. The string is produced by encoding the canonically ordered vertex
labels, the edges, and edge labels as a string. Once the canonical label has been produced
it can be stored in a lookup table such as a hash table. Then checking to see if a candidate
subgraph has been processed only requires computing the canonical label for the candidate
and checking for membership in the lookup table.

2.2.5 Depth First Search Tree

The best approach for creating candidate subgraphs is by adding an edge at a time to
a known frequent subgraph. However, in general a candidate frequent subgraph must be
created for every edge which could be added to the known frequent subgraph. This is
demonstrated by Algorithm 2 which extends a known frequent subgraph with frequent
edges. The algorithm creates extensions for every vertex in the known frequent subgraph.

Creating candidate subgraphs from every vertex for every frequent subgraph ensures
that all frequent subgraphs will eventually be discovered. However, it also results in many
frequent subgraphs being “discovered” multiple times. Using canonical labeling to solve the
graph isomorphism problem allows duplicates to be filtered out. However, it would be even
better if the miner could avoid exploring lattice nodes more than once.

One way to avoid discovering lattice nodes over and over again is to pre-define a depth
first search tree. A depth first search tree of the lattice identifies a unique path in the
frequent subgraph lattice from the root lattice node to each lattice node. Normally in a
depth first search the tree edge into a node is the first edge explored which reaches that
node. When the tree edges are pre-defined the search will skip exploring certain edges and
wait to discover certain nodes until they can be discovered from their predefined tree edges.

9
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This predefinition of the depth first search tree is the canonical depth first search tree for
the frequent subgraph lattice.

There are two methods for identifying the tree edges and both rely on properties of
the canonical labeling. The first method identifies the generating parent for each lattice
node [87]. The generating parent for a graph H with k edges is a subgraph H̄ @ H with
k − 1 edges. The graph H has multiple subgraphs H ′ @ H with k − 1 edges but only one
of them is the generating parent H̄. To construct H̄ arrange H in canonical order (using
any canonical ordering algorithm). Then remove the last edge in H such that the subgraph
is not disconnected. This subgraph is the generating parent. The generating parent can
then be used to identify the tree edges of the canonical depth first search tree. Let A be a
frequent subgraph and let a candidate subgraph be C constructed by adding an edge to A
(e.g. C = A+ ε). To check if (A,C) is a tree edge construct the generating parent C̄ for C.
If and only if A is isomorphic to C̄ (A ∼= C) then (A,C) is a tree edge.

The second method defines a new canonical labeling algorithm called Minimum DFS
Codes with is the key part of the gSpan miner [151]. gSpan defines a lexicographic ordering
on the depth first search (DFS) tree of the subgraphs (not the lattice, an important and
subtle point). The lexicographic ordering allows a unique minimal depth first search tree
(of the subgraphs) to be identified. They encode this tree into a string: the Minimum DFS
Code for the graph (which serves as the canonical label). In gSpan when a candidate graph
C is constructed from a known frequent subgraph A the DFS Code for C is computed. If
C’s code is the minimal DFS code, then (A,C) is a tree edge.

Minimum DFS Codes computations are not competitive with other methods for solving
the graph isomorphism problem [101]. However, gSpan’s approach is generally faster than
finding the canonical parent because it enables skipping some of the candidate subgraph
generation. Recall, in Algorithm 2 extensions to a frequent subgraph H were created for
every vertex v ∈ VH . gSpan skips some of the vertices by extending only from vertices
that fall on the rightmost path of H’s minimum DFS tree (called the rightmost extension).
Normally, it would not be sound to skip creating extensions from some of the vertices.
However, the lexicographic ordering defined by gSpan ensures this optimization is sound.

2.3 Mining Connected Graphs

The previous section focused on the mining transactional datasets where the database D
being mined consisted of many small graphs. However for important software engineering
applications (such as code clone detection) the database is a single large graph G. This small
change has big consequences in frequent subgraph mining as there are multiple definitions of
“frequent.” To deal with these definitions, we introduce a support measure σ which returns
the frequency of a given subgraph H in a graph G.

Definition 2.6 (k-Frequent Subgraph Mining a Graph G).
Given a support measure σ : J·K → N+, a minimum frequency level k ∈ N, and a labeled
digraph G, find all subgraphs H v G s.t. σ(JHKG) ≥ k.

Definition 2.7 (Connected Subgraph Lattice of G). The subgraph relation · v · induces the
Connected Subgraph Lattice LG representing all the possible ways of constructing the graph
G from the empty subgraph by adding one edge at a time. LG is a digraph where each vertex
u ∈ VLG

represents a unique connected (ignoring edge direction) subgraph of G. There is an
edge from u to v in ELG

if adding some edge ε to u creates a subgraph u+ ε isomorphic to
v, v ∼= u+ ε.

10
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Definition 2.8 (k-Frequent Connected Subgraph Lattice of G). A k-Frequent Connected
Subgraph Lattice k-LG is a connected subgraph lattice containing only those subgraphs hav-
ing frequency at least k in G according to some support measure σ.

2.3.1 Counting Support

When mining a large connected graph a support measure which computes the “frequency” of
the graph is required. The simplest support measure is then number of unique embeddings
in H’s subgraph isomorphism class, σ×(JHKG) = |JHKG|. Unfortunately, σ× does not satisfy
a certain desirable Downward Closure Property (DCP) [19].

Definition 2.9 (Downward Closure Property).
If A is a subgraph of B then the support of A is greater than or equal to the support of B.

A v B → σ(JAK) ≥ σ(JBK)

DCP ensures all frequent subgraphs can be discovered by “extending” a smaller frequent
subgraph by adding frequent edges. Furthermore, it ensures the order in which the edges
are added doesn’t make a difference. Thus, DCP ensures the k-LG is connected.

Due to this problem with σ×, a number of support measures have been proposed [19,73,
87]. An intuitively appealing measure, denoted σ•, is the number of Maximal Independent
(non-overlapping) Subgraphs (MIS) [19].

Definition 2.10. Given a graph G and subgraph H, the Maximum Independent Subgraphs
(MIS) is the number of distinct subgraph isomorphism mappings of H into G which do not
overlap. Let JHKG be the set of all mappings, then MIS is

σ• = max |{m1,m2, ...,mk s.t. ∀ i ≤ k [mi ∈ JHKG] ∧ ∀ i, j ≤ k [mi(VH) ∩mj(VH) = ∅]}|

However, the problem of computing MIS is NP-Complete, and in practice using MIS is not
a feasible support metric due to its computational overhead. We generally use Minimum
Image Support [19], as it is both efficient to compute, satisfies DCP, and has been widely
adopted [19,25,39,139].

Definition 2.11. Given a graph G and subgraph H, the Minimum Image Support (MNI)
is the least number of distinct nodes in G that a node in H is mapped to.

σ∧(JHKG) = min
v∈VH

|{m(v) : m ∈ JHKG}|

To compute MNI, find the set of all subgraph isomorphism mappings JHKG of H into
G. For each vertex v ∈ VH compute the unique locations mapped m(v) by all mappings
m ∈ JHKG. Some of the subgraph isomorphism mappings may overlap for a given vertex
v ∈ VH such that m1(v) = m2(v) with m1,m2 ∈ JHKG. MNI only counts one of the images
for m1(v) and m2(v) not both. The final support for the subgraph H is the minimum
number of the unique locations mapped for any vertex.
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Chapter 3

REGRAX: Extracting
Low-Frequency Recurring
Subgraphs from Large Sparse
Graphs with Subgraph
Matching

3.1 Introduction

Mining recurring patterns in graph representations of program code [22, 24, 34–37, 59, 60,
72, 83, 85, 93, 94, 103, 106, 108, 111, 156] is a powerful approach to solving some challenging
problems in software engineering. For instance, frequent subgraph mining (FSM) is used
for finding duplicated code (code clones) [59, 83, 85], implicit programming rules [22], and
bug patterns [135]; it is also used for localizing faults [24, 34–37, 94, 103, 111, 156], detect-
ing plagiarism [93], and automatically completing fragments of program code [106]. An
important example of the kind of graphs that are mined for such purposes is the Program
Dependence Graph (PDG) [46]. A PDG is a sparse, labeled, directed graph in which the
vertices represent program instructions, statements, or basic blocks. The edges are labeled
and represent either data or control dependences between operations (see Figure 4.1).

Our experience revealed several properties of PDGs that make them difficult to analyze
with FSM. Some PDGs contain subgraphs with many instances that overlap either fully
(automorphism) or partially in the PDG. We have observed as many as 16 million instances
of a single pattern. Since a software engineer is usually interested in at most one of the
overlapping instances, finding all of them is not useful. However, in order to accurately
count the support of a pattern [19] all of the overlapping instances must be found (Section
2.3.1).

To address the challenge of mining PDGs and other real world graphs, this paper presents
REGRAX (Recurring GRAph eXtractor), a new framework for efficiently mining and sam-
pling frequent subgraphs. REGRAX is very efficient: in an empirical evaluation described
in Section 3.3, REGRAX outperformed GraMi [39], a recent high performance frequent
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subgraph miner for large connected graphs. Each tool’s performance was evaluated on mul-
tiple real world datasets, including PDGs of large programs, several of the SUBDUE [27]
datasets, and synthetically generated graphs. REGRAX outperformed GraMi by an order
of magnitude.

REGRAX’s improved performance comes from several new optimizations: Unsupported
Extension Pruning, Overlap Pruning, and Pruning Subgraph Matches using the Greedy Inde-
pendent Subgraphs Support Metric.1 As these optimizations have different effects on perfor-
mance they are evaluated both individually and in combination. Finally, the implementation
is parallelized. The parallelization provides an 8× speedup on the machine used for the em-
pirical evaluation. All of the comparisons of REGRAX with GraMi in Section 3.3 are done
with the parallelization disabled to provide a fair comparison as GraMi does not utilize the
multiple processor cores as efficiently as REGRAX.

When mining PDGs or other program graph representations, software engineers are
often interested in finding subgraphs that recur just a few times. For instance, in code
clone studies [59, 60, 83, 85] it is not uncommon for a pattern to be considered a possible
clone if it occurs in as few as two distinct locations in a program. We have found that with
low frequency-thresholds (low support), large PDGs may have a huge number of distinct
“frequent” subgraphs. For example, we found over 500 million 5-frequent subgraphs in jGit
(see Table 5.1 on page 49) before the mining process was stopped after 7 days.

One approach to overcoming this so called “computational bottleneck” [25] is to sample
frequent subgraphs [7, 8, 23, 59, 60] instead of searching for all of them. REGRAX has
two modes – (1) complete mining, in which it finds all of the frequent subgraphs and (2)
sampling, in which it randomly selects a representative subset of the frequent subgraphs.
Both modes are evaluated in Section 3.3 along with the proposed optimizations and support
metrics. The evaluation shows the that complete mining mode outperforms GraMi [39].

Evaluation of the sampling mode shows it is practical to extract frequent subgraphs from
large programs with very low frequency thresholds (2 and 5). Some of the programs contain
patterns with many overlapping instances, which required a new, unsound support measure,
called Greedy Independent Subgraphs (GIS) (Section 3.2.5), to obtain results quickly (< 2
minutes). Previous work, such as GraMi, is not able to successfully mine such graphs at
very low support levels.

Summary of Contributions

1. New optimizations: Unsupported Extension Pruning, Overlap Pruning, and an indexed
Subgraph Matching algorithm integrating information from the pattern mining process
(Sec. 3.2).

2. New support metrics: Fully Independent Subgraphs (FIS) and Greedy Independent
Subgraphs (GIS) for dealing with difficult-to-mine patterns (Sec. 3.2.5).

3. An empirical study on the performance and scalability of the overall system (in both
complete mining and sampling modes), the contributions of each optimization, and
the effect of GIS and FIS (Sec. 3.3).

3.2 Mining Frequent Subgraphs

Recall from Chapter 2 that at a high level all frequent subgraph mining algorithms are
traversals of the k-frequent connected subgraph lattice of the graph G being mined (denoted

1The Greedy Independent Subgraph Support Metric was briefly described as part of our workshop paper
on software clones [60].
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k-LG, see Def. 2.8). All methods start from the empty subgraph and propose candidate
subgraphs of G that might be frequent, check their support (using a support measure) and
propose further, larger candidate subgraphs until all vertices of k-LG have been found.

At a high level REGRAX conducts a depth first traversal of k-LG. Candidate subgraphs
are proposed by extending embeddings (subgraph isomorphism mappings) of the subgraphs.
However, the embeddings are not stored, only the proposed extensions are stored. To find
the embeddings REGRAX uses a new fast subgraph matching algorithm with light weight
indexing to measure the support of candidate subgraphs. The new subgraph matching
algorithm collaborates with the traversal of k-LG to prune the subgraph matching search
space (called Overlap Pruning). The traversal has new optimization (Unsupported Extension
Pruning) which allows it to avoid exploring structures which contain unsupported substruc-
tures. This is made possible by an explicit representation of the one-edge extensions which
are added to known frequent subgraphs to generate candidate subgraphs.

REGRAX’s approach is motivated by our desire to mine and analyze program depen-
dence graphs to identify regions of duplicated code [59]. Program dependence graphs often
contain substructures with overlapping instances (embeddings, subgraph isomorphism map-
pings) which contain automorphisms. A graph G has an automorphism when it has a
non-trivial subgraph isomorphism mapping to itself. Figure 3.1 shows a simple example. In
the figure, each vertex in 3.1b maps to a different vertex in 3.1a.

Automorphisms and overlapping embeddings cause commonly used support measures
for connected frequent subgraph mining (such as MNI [19]) to double count subgraphs
which refer to the same section of code. We have found, in real world programs, frequent
substructures with over 15 million unique subgraph isomorphism mappings into the program
dependence graph. Only a few (< 10) of those mappings refer to distinct locations in
the code. REGRAX solves this problem by introducing a new support measure (Greedy
Independent Subgraphs) which greedily prunes the subgraph matching search space. This
aggressive pruning does not sacrifice sensitivity to duplications which occur in distinctly
different areas of the graph but does (intentionally) reduce sensitive towards subgraphs
whose embeddings overlap each other.

REGRAX’s approach is outlined in Listing 3.1 which is in Python for brevity but the
implementation is in Go. The function mine frequent subgraphs starts at the empty subgraph
and enumerates the canonical depth first search tree of the k-LG (see Section 2.2.5). Nodes
of the k-LG are modeled by the LatticeNode class (partially shown in Listing 3.2). Dupli-
cate subgraphs are eliminated by employing a canonical ordering algorithm (BLISS [77]) to
determine if a subgraph has been previously visited (see Section 2.2.4).

The heart of the algorithm is the function supergraphs in Listing 3.2 which produces the
child nodes of the current k-LG node. It does this by finding all of the candidate subgraphs

 1 

 3 
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(a) Colored digraph

1:2

3:6

4:52:1

5:4

6:3

(b) An Automorphism

Figure 3.1: The graph in 3.1b is a rotation (automorphism) of the graph in 3.1a. In 3.1a the numbers are
the vertex identifiers. In 3.1b there are 2 numbers on each vertex read as: “subgraph vertex id n maps to
graph vertex id m.”
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of G (lines 17, 23-27) which may be frequent and are 1-edge super-graphs of the graph
represented by the current lattice node. It then determines if each candidate subgraph is
frequent and if it generates a LatticeNode to represent it.

1 # param G: the graph G being mined
2 # param min_support: the minimum support for a graph to be frequent
3 # yields a sequence of frequent subgraphs
4 def mine_frequent_subgraphs(G, min_support):
5 stack = list()
6 stack.append(G.root_lattice_node())
7 while len(stack) > 0:
8 n = stack.pop()
9 yield n

10 for supergraph in n.supergraphs():
11 stack.append(supergraph)

Listing 3.1: High level overview of REGRAX.

1 class LatticeNode(object):
2 def __init__(self, G, sg, embs, exts):
3 self.graph = G ## The graph G = (V, E)
4 self.subgraph = sg ## A subgraph of G which this lattice node represents
5 self.supported_embeddings = embs ## embeddings of sg into G
6 self.extensions = exts ## extensions to sg to create candidate frequent
7 ## subgraphs an extension is a source vertex, a
8 ## target vertex, and an edge.
9

10 # returns a sequence of children (direct supergraphs) on the canonical depth
11 # first search tree
12 def supergraphs(self, allow):
13 exts = self.extend()
14 for supergraph in exts:
15 if not self.is_canonical(supergraph):
16 continue
17 support, exts, embs = exts_and_embs(self.graph, supergraph)
18 if support >= min_support:
19 yield LatticeNode(self.graph, supergraph, embs, exts)
20
21 ## Uses the extensions stored in the lattice node to construct supergraphs
22 ## of the current node.
23 def extend(self):
24 supergraphs = set()
25 for ext in self.extensions:
26 supergraphs.add(self.subgraph.extend(ext))
27 return supergraphs
28
29 ## returns True iff. the current subgraph (self) is the "generating
30 ## parent" of the child. (see Section 2.2.5)
31 def is_canonical(self, supergraph):
32 e = len(supergraph.Edges) - 1
33 h = supergraph.remove_edge(e)
34 if not h.connected():
35 if e <= 0:
36 return False
37 e -= 1
38 h = supergraph.remove_edge(e)
39 return bliss.canonical_label(h) == self.canonical_label()
40
41 ## returns a canonical label for this graph based on the canonical ordering
42 ## algorithm BLISS [77].
43 def canonical_label(self):
44 return bliss.canonical_label(self.subgraph)

Listing 3.2: REGRAX’s object oriented model of the k-LG.
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3.2.1 Candidate Subgraph Generation

Candidate frequent subgraphs are graphs which are potentially frequent subgraphs in G.
REGRAX implements two methods for candidate subgraph generation. In both methods,
each candidate subgraph is obtained from a known frequent subgraph by adding one edge.
Given a frequent subgraph A, all the graphs A+ ε obtained by adding one edge ε to A are
candidate subgraphs. Note that although A is a frequent subgraph of G, A + ε may not
even be a subgraph of G. Section 2.2.3 described the two approaches adopted by REGRAX:
extending using frequent edges and extending using embeddings. These two approaches are
contrasted in Listings 3.3 and 3.4. As shown in the empirical evaluation (see Section 3.3),
neither approach is better on all datasets. However, for program graphs (which are the
graphs of interest for this paper) extending using the embeddings seems to be the more
advantageous strategy.

3.2.2 Unsupported Extension Pruning

Every candidate generation strategy inevitably produces subgraphs that are not frequent
in G. Such a non-frequent candidate A + ε is produced from a frequent subgraph A and
an extending edge ε anchored at at least one vertex in A. Any graph B that is a super-
graph of A can be extended with the edge ε creating a graph B + ε. However, since A + ε

1 # param G: the graph G being mined
2 # param sg: a subgraph of G.
3 # Computes the embeddings and the extensions for the subgraph sg. The extensions
4 # are computed from known frequent edges in G.
5 def exts_and_embs(G, sg):
6 embs = list() # embeddings of sg into G
7 for emb in find_embeddings(G, sg):
8 embs.append(emb)
9 if support(embs) >= min_support: break

10 return support(embs), freq_edge_exts(G, sg), embs
11
12 # param G: the graph G being mined
13 # param sg: a subgraph of G.
14 # Computes the set of extensions from the subgraph sg which extend sg by 1 edge
15 # to create direct supergraphs. The extensions are represented by: (source
16 # vertex, target vertex, and an edge).
17 def freq_edge_exts(G, sg):
18 exts = set() # a set of extensions
19 ## create extensions for each vertex in sg.
20 for u in sg.vertices:
21 ## iterate over the frequent edges in G which have a source vertex with
22 ## the same color as u.
23 for edge in G.freq_edges_from_color(u.color):
24 ## check for vertices in sg which match the target vertex of the edge.
25 for v in sg.vertices:
26 if G.color_of(edge.targ) = v.color:
27 exts.add(Extension(u, v, edge))
28 exts.add(Extension(
29 u, Vertex(len(sg), G.color_of(edge.targ)), edge))
30 ## iterate over the frequent edges in G which have a target vertex with
31 ## the same color as u.
32 for edge in G.freq_edges_to_color(u.color):
33 exts.add(Extension(
34 Vertex(len(sg), G.color_of(edge.src)), v, edge))
35 return exts

Listing 3.3: Compute the extensions from frequent edges.
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is a subgraph of B + ε and A + ε is not frequent then B + ε is also not frequent. Thus,
if a particular extension ε leads to a non-frequent subgraph of G then that extension can
be remembered and used to prune subsequent candidates. We call this novel optimization
Unsupported Extension Pruning and while it is not shown in Listing 3.2, for brevity, it is
straightforward to implement.

Figure 3.2 shows a visual example of how extension pruning works. On the left, a
candidate frequent subgraph is shown which did not turn out to be frequent. REGRAX
tracks the extension which created the unsupported candidate (shown in gray with a dashed

1 # param G: the graph G being mined
2 # param sg: the subgraph.
3 # Computes the embeddings and the extensions for the subgraph sg. The extensions
4 # are computed from the embeddings.
5 def exts_and_embs(G, sg):
6 embs = list() # list of embeddings (subgraph isomorphism mappings) of sg in G
7 exts = set() # set of one edge extensions of sg which create supergraphs of sg
8 # these supergraphs become candidate frequent subgraphs.
9 ## Find all of the embeddings (subgraph isomorphism mappings) of sg in G

10 for emb in find_embeddings(G, sg):
11 ## Each embedding maps each vertex u in sg.vertices to a vertex in G.
12 ## iterate over the mapped vertices (emb_idx)
13 for emb_idx in embs.idxs:
14 ## Using an index on G, look up edges that start from the vertex.
15 for edge in G.children_of(emb_idx):
16 add_ext(G, exts, emb, edge, emb_idx, -1)
17 ## Using an index on G, look up edges that end at the vertex.
18 for edge in G.parents_of(emb_idx):
19 add_ext(G, exts, emb, edge, -1, emb_idx)
20 embs.append(emb)
21 return support(embs), exts, embs
22
23 # param G: the graph G being mined.
24 # param exts: The set of extensions.
25 # param emb: the current embedding.
26 # param edge: the edge from G which is going to become a new extension
27 # param src: the source vertex identifier in the subgraph
28 # param targ: the source vertex identifier in the subgraph
29 # Adds an extension (source vertex, target vertex, edge) an extisting set of
30 # extensions.
31 def add_ext(G, exts, emb, edge, src, targ):
32 ## This algorithm needs to take the edge (which is from G) and map it onto
33 ## the subgraph which is represented by the embedding (emb). It looks in the
34 ## embedding to find matching vertices to the end points (src, targ) of the
35 ## edge. It then creates an extension (ext) using that information.
36 has_src = False; has_targ = False
37 src_idx = len(emb); targ_idx = len(emb)
38 if src >= 0:
39 has_src = True; src_idx = src
40 if targ >= 0:
41 has_targ = True; targ_idx = src
42 for sg_idx, emb_idx in emb:
43 if has_src and has_targ: break
44 if not has_src and edge.src == emb_idx:
45 has_src = True; src_idx = sg_idx
46 if not has_targ and edge.targ == emb_idx:
47 has_targ = True; targ_idx = sg_idx
48 ext = Extension(
49 Vertex(src_idx, G.color_of(edge.src)),
50 Vertex(targ_idx, G.color_of(edge.targ)),
51 edge)
52 if graph.frequency_of(ext) >= min_support:
53 exts.add(ext)

Listing 3.4: Compute the extensions from the embeddings.
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(a) A subgraph which is not frequent (unsup-
ported) in the database.
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(b) A portion of the depth first search tree look-
ing for frequent subgraphs.

Figure 3.2: Unsupported extension pruning example.

edge). Using the “unsupported extension” REGRAX skips candidates which are created
using the extension on the left. This is shown in the partial depth first search tree of the
frequent subgraph lattice on the right as red cross-outs.

Lemma 3.1 (Unsupported Extension Pruning).
Given a support counting function σ satisfying DCP, graphs A @ B, and an extending edge
ε anchored to the same vertex v in both VA and VB such that: A @ A+ ε, B @ B + ε, and
A+ ε @ B + ε. Then σ(A+ ε) ≥ σ(B + ε).

Proof. Since A + ε is a subgraph of B + ε by the definition of DCP (Def. 2.9) σ(A + ε) ≥
σ(B + ε).

3.2.3 Support Computation

There are two techniques to compute the support of a subgraph: (1) subgraph matching (as
done by GraMi [39]) and (2) storing and growing the embeddings (as done by G-Miner [73]).
It turns out that the store-and-grow approach is faster when no pattern has too many
embeddings, because it avoids expensive subgraph matching computations. However, we
have encountered pathological patterns, in dependence graphs of real programs, having
more than 15 million embeddings. (The same patterns may have MNI support less than
10.) Such patterns often caused a frequent subgraph miner using store-and-grow to fail
with an Out-of-Memory (OOM) error, even on a machine with 96GB of RAM. REGRAX
implements both store-and-grow and subgraph matching, but due to space limitations only
the subgraph matching mode is evaluated in Section 3.3.

We solve the subgraph matching problem with a new algorithm shown in Listing 3.5.
Our new subgraph matching algoirthm proceeds as a backtracking tree-search procedure –
in contrast to GraMi [39] which used a constraint solving approach. The tree nodes in the
search correspond to partial subgraph isomorphism mappings (see Figure 3.3). They are
represented by linked lists (called IdNode in the listing) allowing the reuse of partially correct
mappings during the search without the need for new allocations.
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1 # A linked list of vertex embeddings. Each node maps a subgraph vertex index
2 # (sg_idx) to a vertex in the graph G (emb_idx).
3 class IdNode(object):
4 def __init__(self, sg_idx, emb_idx, prev=None):
5 self.sg_idx = sg_idx
6 self.emb_idx = emb_idx
7 self.prev = prev
8 ## Helper methods for iteration etc... omitted for brevity
9

10 # param G: the graph G being mined
11 # param sg: the subgraph to find embeddings of.
12 # param prune_fn : optional pruning function
13 def find_embedddings(G, sg, prune_fn=None):
14 ## First, construct a spanning tree of the edges in sg.
15 edges = spanning_tree(sg)
16 for edge in sg.edges:
17 ## Add the rest of the edges not in the spanning tree.
18 if edge not in edges: edges.append(edge)
19 stack = list()
20 ## Embeddings for the source vertex of the first edge in the spanning tree.
21 vembs = vertex_embeddings(G, sg, edges[0].src)
22 ## Create a linked list of each of embeddings.
23 for emb_idx in vembs:
24 stack.append((IdNode(start_idx, emb_idx), 0))
25 while len(stack) > 0:
26 cur, eid = stack.pop() ## pop the next partial embedding and edge-id.
27 if prune_fn is not None and prune_fn(cur):
28 continue
29 if eid >= len(edges):
30 yield embedding_from_ids(cur)
31 else:
32 exts = extend_embedding(G,sg,cur,edges[eid])
33 for next in exts:
34 stack.append((next, eid+1))
35
36 # param cur: the current partial embedding of sg into G
37 # param edge: the edge to add to the current partial embedding
38 def extend_embedding(G, sg, cur, edge):
39 src, targ = emb_idxs(cur, edge.src, edge.targ)
40 if src > -1 and targ > -1:
41 if G.has_edge(src, targ, edge.color):
42 yield cur
43 elif src > -1:
44 targs = G.targs_from_src(src, edge.color, sg.color_of(edge.targ))
45 for targ in targs:
46 dok = degrees_ok(e.targ, targ)
47 if dok and targ not in cur:
48 yield IdNode(e.targ, targ, prev=cur)
49 elif targ > -1:
50 srcs = G.srcs_from_targ(targ, edge.color, sg.color_of(edge.src))
51 for src in srcs:
52 if degrees_ok(e.src, src) and src not in cur:
53 yield IdNode(e.src, src, prev=cur)
54
55 # param embedding: a partial embedding (an IdNode list)
56 # param s_sg_idx: the source vertex in the subgraph
57 # param t_sg_idx: the target vertex in the subgraph
58 # Returns the indexes in the graph G for the source and target mapped by the
59 # current partial embedding. If no mapping exists then -1 is returned.
60 def emb_idxs(embedding, s_sg_idx, t_sg_idx):
61 s_emb_idx = -1; t_emb_idx = -1
62 for c in embedding:
63 if c.sg_idx == s_sg_idx: s_emb_idx = c.emb_idx
64 if c.sg_idx == t_sg_idx: t_emb_idx = c.emb_idx
65 return s_emb_idx, t_emb_idx

Listing 3.5: The basic search algorithm for finding all subgraph isomorphisms.
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The search starts by computing a spanning tree of edges for the subgraph. The choice of
spanning tree is critical as some structures occur less frequently in the graph being searched
than others. However, as previously noted [81] there is no known method for selecting
the best spanning tree for all subgraph matching queries. The best spanning tree is the
one which minimizes the runtime of the algorithm by minimizing the size of the subgraph
matching search tree. Our algorithm for selecting the spanning tree chooses edges with
higher selectivity first. The selectivity of an edge is the number of potential partial mappings
created from the edge given the number of mappings created by the partial spanning tree.
The fewer additional mappings an edge adds to the mappings for the partial spanning tree
the higher the selectivity of the edge is. Empirically, this heuristic chooses a good (although
not necessarily optimal) spanning tree most of the time.

The critical part of new algorithm is shown in function extend embedding. Given a partial
embedding (possibly containing a mapping for just one vertex in the subgraph) and a edge,
the function extend embedding in Listing 3.5 extends the embedding using the edge. It begins
by finding the attachment points (lines 19, 37-42) of the edge onto the current embedding
(cur). It then extends the embedding using the edge. There are three cases: (1) if both
ends of the edge are in the current embedding (lines 21-23), (2) if the source (src) is in
the current embedding (lines 24-29) and (3) if the target (targ) is in the current embedding
(lines 30-35). To make this function fast, the data graph is indexed to allow a quick lookup
of potential matching edges in the graph. If the added edge involves adding a new vertex
to the partial mapping, the degrees of new vertices are checked (lines 28 and 34) to ensure
they are greater than or equal to the expected degree in subgraph (as in NOVA [159]).

3.2.4 Overlap Pruning

Overlap Pruning is a new pruning strategy for subgraph matching which collaborates with
the frequent subgraph mining algorithm. In frequent subgraph mining, all the subgraphs
that are matched are built from smaller subgraphs whose embeddings were previously com-
puted. Overlap pruning uses this observation to prune the search space for subgraph match-
ing as shown in Figure 3.3.

Given a graphs A and B which are both subgraphs of G. Let, B be a subgraph of A
(B @ A) and be a frequent subgraph of G with known embeddings. Overlap pruning hinges
on the observation that the only valid embeddings for a subgraph A all include embeddings
for B. In overlap pruning, all the vertices shared between A and B are tracked. For each
of the shared vertices the set of locations in the data graph G where they are embedded as
part of B are recorded. These sets (called the overlap) prune potential embeddings of A
that do not overlap with an embedding of B (see Figure 3.3).

Lemma 3.2 (Overlap Pruning).
Let A and A + ε be subgraphs of G, where ε is an edge and A @ A + ε. Let JAKG be all of
the subgraph isomorphism mappings from A into G. The set vertices in G mapped by the
mappings JAKG for a vertex v ∈ VA is denoted JAKG(v) = {m(v) : m ∈ JAKG}. Given
the mappings JA+ εKG for A + ε into G, each vertex v in both VA and VA+ε satisfies
JA+ εKG(v) ⊆ JAKG(v).

Proof. The statement holds since each mapping mA+ε→G ∈ JA+ εKG includes a mapping
mA→G for A. If there was some mapping m′A+ε→G that did not including a mapping for
A then there would be some edge in A not in A+ ε, but since A+ ε is a super-graph of A
all edges in A are in A+ ε (a contradiction of the existence m′A+ε→G). Thus, each vertex v
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Figure 3.3: Overlap pruning example.
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in both VA and in VA+ε must satisfy JA+ εKG(v) ⊆ JAKG(v) because no mapping m′A+ε→G
exists which could violate the statement.

3.2.5 Dealing with Pathological Substructures

The primary application of REGRAX is for mining program dependence graphs (PDG)s. We
have observed certain pathological substructures of the PDGs for real world Java programs
which are very difficult to mine. The substructures contain many complete or partial auto-
morphisms onto themselves. These automorphisms lead to millions of unique embeddings
(subgraph isomorphism mappings) in the PDG. Although there are millions of embeddings
only a few of them are of interest to software engineers. In applications such as Code Clone
Detection [59] which finds instances of duplicated code, programmers only care to examine
unique locations in the source code. A substructure with millions of embeddings which all
map to the same location in the source code is uninteresting to the programmer.

Simply filtering out the automorphic embeddings as a post processing step is an attractive
way to deal with this problem. However, finding or storing millions of embeddings for each
candidate frequent subgraph is impractical and limits the application of frequent subgraph
mining for software engineering applications. Unless frequent subgraph mining can scale
up to large real world programs its impact on software engineering practice will be limited.
To deal with this problem a new support measure Greedy Independent Subgraphs (GIS) is
presented in this dissertation. GIS sacrifices satisfaction of the downward closure property
(DCP) for subgraphs with automorphisms and overlapping embeddings in order to scale
frequent subgraph mining to larger programs. The empirical study demonstrates both the
necessity for GIS and quantifies its effect on the number of frequent subgraphs missed due
to the violation of DCP.

To introduce GIS we will first develop a related measure Fully Independent Subgraphs
(FIS). Recall the metrics introduced in Section 2.3.1. Those metrics were either slow to
compute (such as MIS, σ•) or they allowed overlapping embeddings (such as MNI, σ∧).
What is needed for graphs that have frequent patterns with many automorphisms and
overlapping embeddings is a support measure that is at least as restrictive as σ• but much
cheaper to compute. Therefore, we propose the Fully Independent Subgraphs (FIS) measure
denoted by σM.

Definition 3.1 (Embedding Graph). Given labeled digraphs H and G where H v G, let each
unique embedding (subgraph isomorphism mapping) m ∈ JHKG be a vertex in an undirected,
unlabeled embedding graph EHG . Let there be an edge (a, b) ∈ EEHG if the two embeddings

a, b ∈ VEHG overlap, i.e., ∃ u, v ∈ VH [a(u) = b(v)].

Definition 3.2 (Fully Independent Subgraphs).
The FIS support of a subgraph H of a labeled digraph G is the number of connected compo-
nents in the embedding graph of H in G, EHG .

σM(JHKG) =
∣∣{c | c is a connected component of EHG

}∣∣
FIS σM (in comparison with other proposed measures) is at least as restrictive as MIS σ•.

Lemma 3.3 (FIS ≤ MIS). For all graphs H v G:

σM(JHKG) ≤ σ•(JHKG)
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Proof. FIS σM is the number of connected components of the embedding graph EHG . If every
component has a single embedding, there are no overlapping embeddings and the MIS σ•
is equivalent to σM. Consider the other case where there is one component c ⊆ VEHG with
multiple embeddings. Assume without loss of generality that all other components contain
just one embedding. If c forms a clique in the embedding graph then the measures are
equivalent since σM(c) = 1 by Def. 3.2 and σ•(c) = 1 since no embedding in the clique
is independent (non-overlapping) of any other embedding in the clique. However, if the
embeddings in c do not form a clique there must be at least one pair of embeddings u, v ∈ c
such that there is no edge between them in the embedding graph (u, v) /∈ EEHG . Then

σ•(c) ≥ σM(c) since σ• may be ≥ 1 for a connected component but σM will always equal
exactly 1 for a connected component.

Lemma 3.4 (FIS does not satisfy DCP). There exists a labeled digraph G and subgraphs
A and B of G such that A @ B and σM(JAKG) < σM(JBKG), violating DCP (Def. 2.9).

Proof. This proof is by example. Consider the graph in Figure 3.4. The first pattern (a
black vertex connected to a white vertex) has 4 embeddings. However, they are all connected
together as part of the embedding graph (the dotted edges) so the support under FIS is 1.
Pattern 1 is a super-graph of pattern 2. Pattern 1’s support under FIS is 2 as its embedding
graph is disconnected, proving the lemma.

As a consequence of Lemma 3.3, FIS is more restrictive than MIS and MNI. Unlike MIS,
computing FIS is tractable and can be done online as embeddings for a particular subgraph
are found. As a consequence of Lemma 3.4 the FIS metric does not satisfy the downward
closure property. Since the downward closure property is not satisfied, the frequent subgraph
lattice for a graph may contain holes (missing vertices) or be disconnected (with part of the
lattice unreachable from the root lattice node). These irregularities cause subgraph miners
using FIS to miss potential subgraphs that are frequent under FIS. As illustrated in Figure
3.4, DCP violations occur when the subgraph A from the Lemma 3.4, which is a subgraph

1 2 3 4 5 6 7

(a) graph

(b) pattern 1 (c) pattern 2

2 3 34 4 5 56

(d) The embeddings of pattern 1. Since the
embedding graph is connected, the FIS sup-
port is 1.

1 2 3 7 56

(e) The embeddings of pattern 2. Since there
is no overlap FIS support is 2.

Figure 3.4: Proof by example for Lemma 3.4
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Figure 3.5: GIS pruning example.

of B, has overlapping embeddings that are not included in the embeddings of B. If finding
those subgraphs is critical for a particular application, FIS should not be used.

Listing 3.6 shows the Greedy Independent Subgraphs (GIS) pruning strategy. Figure 3.5
shows an example for a small undirected graph. GIS is an approximation of the FIS support
measure. Like FIS it computes the number of connected components in the embedding graph
of a subgraph H. However, it does so in a greedy fashion. During the subgraph matching
process, if a subgraph vertex in a partial mapping maps to a vertex in the data graph that
has been found in a complete embedding then the partial mapping is discarded. This is

1 ## This higher order function produces a pruning function for find_embeddings
2 ## (see Listing 3.5). Takes a set (seen) which should track vertices of G
3 ## which have appeared in some previously found embedding.
4 def gis_pruner(seen):
5 def gis_prune(cur):
6 ## for the current embedding (cur), check if any of the vertices
7 ## (emb_idx) have appeared in a previously discovered embedding
8 for n in cur:
9 if n.emb_idx in seen:

10 ## If they have, add all vertices of G in cur to seen, and
11 ## return true to indicate "cur" should be pruned
12 for m in cur:
13 seen.add(m.emb_idx)
14 return True
15 return False
16 return gis_prune
17
18 ## A drop in replacement for the find_embeddings function (see Listing 3.5)
19 ## which implements GIS pruning.
20 def gis_pruning(G, sg):
21 seen = set()
22 embs_it = find_embeddings(G, sg, gis_pruner(seen))
23 for emb in embs_it:
24 for emb_idx in emb.idxs: seen.add(emb_idx)
25 yield emb

Listing 3.6: Pruning the embedding search space with GIS.
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implemented by passing the gis prune function into the find embeddings function (from Listing
3.5) as the prune fn parameter. By discarding a partial mapping, a portion of the subgraph
matching search tree is pruned. GIS pruning can lead to significant reduction in effort, but
at the cost of over-approximating FIS (and thus computing a higher support number than
FIS). Like FIS, GIS does not satisfy DCP and should only be used when it is not feasible
to mine a particular graph under MNI at the desired support setting.

3.2.6 Sampling Frequent Patterns

For large program graphs, finding all frequent subgraphs at low support is not feasible. Even
if all of the frequent subgraphs are located, analyzing or storing them requires too much
effort, because they can number in the hundreds of millions (or more) for large program
dependence graphs. Sampling frequent subgraphs using an unweighted forward random walk
(URW) (see Listing 3.7) has proven to be a fast effective method [23,59,60] for collecting a
diverse set of maximal frequent subgraphs. In the empirical evaluation in Section 3.3, RE-
GRAX’s suitability for sampling low-frequency recurring subgraphs is demonstrated using
the URW algorithm.

3.3 Empirical Evaluation

The new frequent subgraph miner, REGRAX, was evaluated in an empirical study. RE-
GRAX2 is implemented in the Go programming language and is parallelized. Four primary
questions were examined:

1. How quickly can REGRAX mine program dependence graphs from large programs?
(Table 5.1)

2. How does the performance of REGRAX compare to GraMi [39], a recent high perfor-
mance frequent subgraph miner? (Table 3.2)

3. What is the effect of the novel optimizations and support measures on its performance?
(Tables 3.3, 3.4, 3.5)

4. How quickly can REGRAX collect a sample of low frequency recurring subgraphs from
the program dependence graphs of large programs? (Figure 5.2)

The evaluation was conducted on a dual socket server with two 2010 Intel Xeon CPUs
(model # X5650). The server had 96 GB of RAM and a 1 TB RAID array. Despite the
large amount of RAM available, REGRAX used at most 10 GB of RAM. GraMi failed to

2https://github.com/timtadh/regrax

1 # param G: the graph G being mined
2 # param min_support: the minimum support for a graph to be frequent
3 # yields a random frequent subgraph
4 def unweighted_random_walk(G, min_support):
5 prev = cur = G.root_lattice_node()
6 while cur is not None:
7 n = random_choice(cur.supergraphs())
8 prev = cur
9 cur = n

10 return prev

Listing 3.7: Unweighted Random Walk
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Dataset Type Nodes Edges Labels Index Time k Patterns Time (sec) Options

Credit SUBDUE 14,750 14,000 79 0.72± 0.10 150 3,511 5.01± 0.11 mxot

100 11,730 11.69± 0.15 mxot

50 74,036 53.70± 1.04 mxot

Aviation SUBDUE 101,185 135,000 6,225 5.45± 0.13 2200 309 9.20± 0.13 met

2000 856 14.34± 0.21 met

1500 5,247 50.70± 0.36 met

ExprCalc PDG 1,110 2,162 369 0.17± 0.01 4 4,338 1.49± 0.12 mxot

3 52,456 9.08± 0.90 mxot

Zookeeper PDG 17,028 32,691 4,313 2.17± 0.04 12 26,383 12.73± 0.45 mxot

10 74,980 27.37± 1.38 mxot

DDH PDG 36,384 65,874 10,110 4.66± 0.06 25 1,388 6.24± 0.07 mxot

20 2,666 7.48± 0.07 mxot

BCEL PDG 52,731 108,542 9,781 6.73± 0.05 150 2,845 10.52± 0.11 mxot

100 15,739 33.91± 0.22 mxot

jGit PDG 136,716 300,550 25,074 17.56± 0.14 100 3,897 50.87± 0.80 mxot

Tomcat PDG 388,098 829,801 68,506 50.38± 0.48 1000 141 53.54± 0.55 mxot

hBase PDG 442,063 981,577 89,733 58.98± 0.58 200 27,305 735.52± 7.80 mxot

OrientDB PDG 1,958,639 3,618,892 356,323 224.1± 19.5 1500 3,214 435.17± 30.73 mxot

Random-1 Random 150 224 11 0.04± 0.01 2 97 0.073± .006 mxot

Random-2 Random 150 5,303 11 0.10± 0.01 21 33 19.33± 0.68 met

Table 3.1: REGRAX’s performance using the MNI support measure and 24 threads. k is the minimum
frequent (support) setting used. The times are reported as mean ± standard deviation and were computed
from 50 independent runs of the program.
Options: m: MNI metric, f : FIS metric, g: GIS metric, x: extend from embeddings, e: extend from
frequent edges, o: overlap pruning, t: extension pruning,

Dataset k R. # Patterns R. Time (sec) G. # Patterns G. Time (sec) R. Options

Credit 500 33 1.05± 00.02 24 6.90 mxot

200 1,348 15.03± 00.13 1,325 305 mxot

Aviation 2200 309 31.16± 00.46 297 9.6 met

2000 856 71.33± 01.31 843 59.2 met

1500 5,247 379.33± 09.78 — killed after 2 days met

ExprCalc 4 4,338 6.29± 00.40 4,275 44 mxot

Zookeeper 25 842 6.16± 00.09 842 37 mxot

DDH 50 375 6.55± 00.07 302 17 mxot

BCEL 150 2,845 31.86± 00.33 1,687 244 mxot

jGit 150 2,335 90.41± 01.43 1,283 1,231 mxot

Tomcat 1000 141 71.64± 00.96 131 150 mxot

hBase 500 2,575 775.39± 014.8 2,672 4,897 mxot

OrientDB 1500 3,214 1, 930.49± 144.5 — OOM crash mxot

Random-1 2 97 0.13± 0.006 382 4.2 mxot

Random-2 21 33 125.84± 00.89 — killed after 10 days met

Table 3.2: Comparison against GraMi [39]. For this table, REGRAX was run in single threaded mode,
putting REGRAX at a slight disadvantage as GraMi used 2 threads. GraMi was run in “undirected mode”
for all graphs, as its directed mode is much much slower (10x for most datasets). Since GraMi mined in
undirected mode the number of patterns it found was sometimes greater than REGRAX. In comparison to
Table 5.1, some of the support values k are increased because GraMi was very slow with those settings.
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Dataset k mx Time me Time mxo Time mxt Time met Time

Credit 150 6.72± 0.14 8.75± 0.12 5.60± 0.09 5.93± 0.11 6.87± 0.08

Aviation 2200 145.74± 4.57 17.92± 0.38 144.04± 4.67 30.19± 1.92 9.28± 0.39

ExprCalc 3 11.57± 1.84 63.82± 16.4 10.45± 1.92 6.91± 0.40 26.96± 6.27

Zookeeper 25 3.50± 0.06 3.49± 0.08 3.21± 0.06 3.14± 0.05 3.18± 0.07

DDH 25 7.24± 0.11 10.05± 0.09 6.68± 0.11 6.72± 0.09 8.52± 0.08

BCEL 100 55.93± 0.40 58.04± 0.31 44.20± 0.35 41.08± 0.36 40.45± 0.19

jGit 100 82.80± 1.00 77.22± 0.70 62.56± 0.77 60.15± 0.70 51.60± 0.36

Tomcat 1000 53.82± 0.53 53.38± 0.78 53.54± 0.49 53.81± 0.51 53.53± 0.47

hBase 200 1, 336.9± 13.6 1, 289.6± 26.3 904.82± 9.26 978.23± 10.4 858.00± 12.3

OrientDB 1500 732.8± 42.2 814.5± 42.7 523.18± 38.1 543.87± 35.5 569.44± 20.2

Random-1 2 .0664± 0.0056 0.12± .011 0.0688± 0.0071 0.0674± 0.0048 0.1118± 0.0142

Random-2 21 6076.8± 122.7 76.66± 1.15 6915.3± 130.5 1384.8± 51.7 19.12± 0.60

Table 3.3: Comparison of the optimizations and pruning strategies under MNI.

Dataset k Options MNI Time MNI Pat. FIS Time FIS Pat. GIS Time GIS Pat.

Credit 150 x 6.74± 0.16 3,511 6.28± 0.13 3,511 7.20± 0.16 3,511

Aviation 2200 e 17.91± 0.36 309 12.27± 0.19 309 11.01± 0.16 309

ExprCalc 3 x 11.77± 1.88 52,456 11.00± 2.03 52,442 7.45± 0.23 52,442

Zookeeper 12 x 20.14± 0.78 26,383 16.81± 0.47 24,687 16.59± 0.57 24,693

DDH 25 x 7.41± 0.10 1,388 6.41± 0.07 1,129 6.18± 0.09 1,133

BCEL 100 x 56.34± 0.52 15,739 52.99± 0.45 15,700 46.41± 0.39 15,701

jGit 100 x 82.68± 1.03 3,897 65.57± 0.33 3,615 60.11± 0.50 3,600

Tomcat 1000 x 53.95± 0.56 141 52.59± 0.46 121 52.27± 0.51 122

hBase 200 x 1, 338.01± 14.6 27,305 1, 091.25± 10.9 23,902 757.63± 8.72 23,742

OrientDB 1500 x 723.59± 42.1 3,214 537.35± 11.2 2,712 466.75± 4.58 2,722

Random-1 2 x 0.0672± 0.0077 97 0.0592± 0.0077 95 0.06± 0.008 95

Random-2 21 e 72.54± 1.52 33 0.11± 0.01 2 0.11± 0.01 2

Table 3.4: Comparison of support metrics. No pruning strategies were used.

Dataset k Options o Time o Pat. t Time t Pat. ot Time ot Pat.

Credit 150 x 5.94± 0.11 3,511 6.30± 0.12 3,511 5.32± 0.11 3,511

Aviation 2200 e – – 8.96± 0.14 309 – –

ExprCalc 3 x 7.62± 1.77 52,425 7.11± 1.16 52,442 6.13± 1.24 52,425

Zookeeper 12 x 12.39± 0.30 23,509 13.54± 0.38 24,693 10.60± 0.37 23,509

DDH 25 x 5.71± 0.07 1,017 5.93± 0.07 1,133 5.59± 0.06 1,017

BCEL 100 x 33.01± 0.26 15,691 32.02± 0.27 15,701 24.12± 0.17 15,691

jGit 100 x 39.81± 0.28 3,358 40.57± 0.29 3,600 31.49± 0.25 3,358

Tomcat 1000 x 51.88± 0.52 119 51.94± 0.53 122 51.81± 0.47 119

hBase 200 x 299.92± 2.16 13,933 494.71± 3.14 23,742 221.34± 1.91 13,931

OrientDB 1500 x 378.83± 25.4 2,577 413.56± 25.6 2,722 332.77± 21.0 2,577

Random-1 2 x 0.066± 0.007 94 0.06± 0.007 95 0.068± 0.006 94

Random-2 21 e – – 0.11± 0.01 2 – –

Table 3.5: Comparison of the pruning strategies under GIS.
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(h) OrientDB

Figure 3.6: This figure shows the scalability of REGRAX for mining frequent patterns quickly from large
search spaces. Each plot is a box-and-whisker diagram of execution time in seconds for 50 runs of the
Unweighted Random Walk sampling algorithm on the PDG datasets. Each run collected samples containing
100 maximal frequent subgraphs. The number on the top of the axis is the maximum size (in edges) of a
frequent subgraph found with the options specified below the axis.

mine the largest dataset, OrientDB (see Table 5.1), faulting with an Out-of-Memory Error
(OOM) after consuming all available RAM.

Table 5.1 summarizes the performance of REGRAX on all datasets used in the evalu-
ation. Credit and Aviation are undirected labeled graphs that have been used in several
previous studies [27, 39, 72, 87] and are included here for comparison. These were mined as
if they were directed labeled graphs. REGRAX outperforms the previously published num-
bers for these datasets (see Table 5.1). The Random-1 and Random-2 datasets are small
directed random graphs generated from uniform label and edge distributions. Random-1
is a sparse graph with an edge-to-vertex ratio similar to those for the real world graphs in
the study. Random-2 is a dense graph intended to be difficult to mine. Dense graphs with
uniform edge and label distributions are a hard cases for frequent subgraph mining since
there are many repeated subgraphs.

The rest of the datasets are Program Dependence Graphs (PDGs) produced from Java
programs using jpdg [59, 60]. The OrientDB dataset includes not only the PDG produced
from the source code of OrientDB but also includes the PDG of all the libraries it depends
on (excluding the Java Standard Library). The DDH dataset is a portion of a proprietary
application and has been anonymized. All of the graphs analyzed as part of this study have
been made available as part of the release of REGRAX for the use in future research.

Note: all REGRAX executions were replicated 50 times in the evaluation. All timing
data for REGRAX is reported as the mean number of seconds required ± the standard

28



CHAPTER 3. REGRAX: EXTRACTING LOW-FREQUENCY RECURRING
SUBGRAPHS FROM LARGE SPARSE GRAPHS WITH SUBGRAPH MATCHING

deviation.

3.3.1 REGRAX versus GraMi

Table 3.2 compares the performance of GraMi [39] to REGRAX. GraMi was not observed
to make good use of the 24 available hardware threads and REGRAX was therefore run
with its support for parallel processing disabled. GraMi supports mining in both directed
and undirected graphs. However, the directed mining mode is much slower, so we used
the undirected mode. This led to a slight discrepancy in the number of reported frequent
subgraphs. There were three datasets that GraMi could not mine: Aviation (at minimum
support level 1500), OrientDB, and Random-2. GraMi failed with an Out-of-Memory error
(OOM) on the OrientDB dataset. GraMi was left to run for 2 days on Aviation at support
level 1500, but it did not complete and it used over 40 GB of memory. Finally, GraMi was
left to run on the Random-2 dataset for 10 days, but it did not complete.

Overall, REGRAX significantly outperformed GraMi on all of the PDG datasets as well
as on Credit, Random-1 and Random-2. GraMi performed better than REGRAX on the
Aviation dataset at higher support levels but could not successfully mine Aviation at the
lower support level. For this comparison REGRAX was handicapped by preventing it from
using more than 1 thread – if more threads are allowed (see Table 5.1) REGRAX performs
even better. Parallelization is an effective strategy for increasing the performance of a
frequent subgraph miner.

3.3.2 Optimization Effects

Table 3.3 shows the effects of the optimizations introduced in Section 3.2 (consult Table
5.1 for the legend of pruning strategies and optimizations). The two candidate subgraph
generation strategies (Extend from Embeddings x and Extend from Frequent Edges e) are
compared. The effects of Overlap Pruning o and Extension Pruning t are also shown in
combination with both candidate generation strategies. Note, Overlap Pruning cannot be
used when generating candidates from frequent edges because (as shown in Listing 3.3) the
enumeration of the embeddings exits early.

Neither of candidate generation strategies was clearly superior to the other in all in-
stances. However, from our testing with larger graphs, with a large number of unique
labels, and when using lower minimum support values, it is better to extend from the em-
beddings than from the frequent edges. When extending from embeddings fewer spurious
candidates are generated, resulting in lower overall memory usage and higher performance.
However, for some datasets (such as Aviation) extending from the frequent edges was better
by an order of magnitude. Both Overlap Pruning and Extension Pruning proved to be
effective. However, the magnitude of the effect was dependent on the dataset. For instance
when extending from embeddings on the Aviation dataset, Extension Pruning reduced the
mining time from 146 seconds to 30 seconds. However, for Tomcat it had a negligible effect.

Table 3.4 compares the effect of the three support measures MNI, FIS, and GIS. As a
reminder, MNI [19] satisfies DCP while FIS and GIS do not. Unless mining with MNI is
not feasible for your application we suggest using MNI. FIS and GIS reduce the number
of patterns found (marginally) for most of the datasets. However, the payoff in improved
performance can be dramatic as in the case of hBase, which took 1,338 seconds to mine
under MNI but only 758 seconds under GIS.
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Table 3.5 shows the effects of combining GIS with the Overlap Pruning and Extension
Pruning. Combining GIS with Extension Pruning appears to have no empirical effect on
the number of patterns found (although theoretically the combination could result in fewer
patterns found). This combination always improves performance (sometimes dramatically,
see hBase). Combining GIS with Overlap Pruning is less of a clear win as the number of
patterns may be reduced. If losing a few patterns does not matter further combining all
three optimizations together results in the best performance.

The subgraphs that are missed under the combination of GIS, Extension Pruning, and
Overlap Pruning tend to have one of the following two properties. First, while a missed
subgraph is frequent under MNI it is only frequent due to embeddings that overlap either
fully or partially. The overlaps cause GIS (and also FIS) to return a lower support value
than MNI. Second, a missed subgraph contains a subgraph with automorphisms. The
automorphisms cause embeddings to be skipped under Overlap Pruning. If missing a few
frequent subgraphs such as these is not a problem, this combination can enable mining
graphs that are not easily mined otherwise.

3.3.3 Sampling Low-Frequency Recurring Subgraphs

Our experiments have shown that using the combination of GIS, Extension Pruning, and
Overlap Pruning is required when sampling low-frequency recurring subgraphs from large
program dependence graphs. This combination may result is some frequent subgraphs
(which would have been findable under MNI) being missed. Figure 5.2 summarizes this
result. It was possible to sample all of the PDGs at the lowest support levels. However, it
was not possible to sample all of the graphs at such low support levels under MNI within
our time budget of a maximum of 2 days per program execution.

Overall, REGRAX was able to successfully sample all of the datasets within our time
budget using the GIS support measure. The longest amount of time it took to sample any of
the datasets was 10 hours, for OrientDB at support level 2. All of the other datasets could be
sampled much faster, with a worst case time of 1 hour. For hBase (the next largest dataset
after OrientDB), the mean sampling time was just 9 minutes. However, under the MNI
support measure the results were not as good. The Tomcat, hBase and OrientDB datasets
could not be sampled within the 2 day time budget, and the minimum support level had to
be increased in order to reliably get results. The underlying cause of the problem for these
datasets was the presence of patterns with many millions of overlapping embeddings – all
of which need to be computed to calculate the MNI support measure. However, using GIS
the subgraph matching search tree is pruned making the performance much better.

3.4 Conclusion

Frequent subgraph mining large connected graphs is a useful and important data-mining
technique with broad applications in many disciplines. Its use has been held back by scalabil-
ity concerns and difficulties using it on large datasets with low minimum frequency settings.
The novel system REGRAX presented in this paper contains new optimizations that help it
outperform GraMi [39], a recent high performance miner, on both synthetic and real world
datasets. REGRAX also implements new support measures. The new measures enable
REGRAX to extract low-frequency recurring subgraphs from large graphs using sampling
techniques. REGRAX is an advance in the state-of-the-art for mining frequent subgraphs
from large connected graphs.
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Chapter 4

Sampling Code Clones with
GRAPLE

4.1 Introduction

Code clones are similar fragments of program code [125]. They can arise from copying and
pasting, using certain design patterns or certain APIs, or adhering to coding conventions,
among other causes. Code clones create maintenance hazards, because they often require
subtle context-dependent adaptation and because other changes must be applied to each
member of a clone class. To manage clone evolution the clones must first be found. Clones
can be detected using any program representation: source code text, tokens, abstract syntax
trees (ASTs), flow graphs, dependence graphs, etc. Each representation has advantages and
disadvantages for clone detection.

PDG-based clone detection finds dependence clones corresponding to recurring subgraphs
of a program dependence graph (PDG) [83,85]. Since PDGs are oblivious to semantics pre-
serving statement reorderings they are well suited to detect semantic (functionally equiva-
lent) clones. A number of algorithms find clones from PDGs [22,48,70,83,85,93,109,112,119].
However, as Bellon [16] notes, “PDG based techniques are computationally expensive and
often report non-contiguous clones that may not be perceived as clones by a human evalu-
ator.” Most PDG-based clone detection tools are biased, detecting certain clones but not
others.

The root cause of scalability problems with PDG-based clone detection is the number
of dependence clones. Section 4.3 illustrates this with an example in which we used an
unbiased frequent subgraph mining algorithm [87] to detect all dependence clones in Java
programs. In programs with about 70 KLOC it detected around 10 million clones before
disk space was exhausted. Processing all dependence clones is impractical even for modestly
sized programs.

Instead of exhaustively enumerating all dependence clones, an unbiased random sample
can be used to statistically estimate parameters of the whole “population” of clones, such as
the prevalence of clones exhibiting properties of interest. For these reasons, we developed a
statistically unbiased method for sampling dependence clones and for estimating parameters
of the whole clone population.

1Note, portions of this chapter originally appeared as [59] https://dx.doi.org/10.1145/2989238.2989241.
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We present GRAPLE (GRAph samPLE)1, a method to generate a representative sample
of recurring subgraphs of any directed labeled graph(s). It can be used to sample subgraphs
from any kind of program graph representation. GRAPLE is not a general purpose clone
detector but it can answer questions about dependence clones that other PDG-based clone
detection tools cannot. We conducted a preliminary case study on a commercial application
and had its developers evaluate whether the sampled subgraphs represented code duplica-
tion. To our knowledge, it is the first study to have professional programmers examine
dependence clones.

Contributions

1. GRAPLE: a framework for unbiased sampling of frequent subgraphs of large graphs
such as PDGs and for estimating statistics characterizing the whole population of
frequent subgraphs. (Sec. 4.3.3, 4.3.4)

2. A case study in which GRAPLE was applied to a commercial Android application and
in which its output was examined by developers. (Sec. 4.4)

3. jpdg: a new procedure dependence graph generator for JVM languages. (Sec. 4.2)

GRAPLE has applications in bug mining, test case selection, and bioinformatics. The
sampling algorithm also applies to frequent item sets, subsequences, and subtrees allowing
code clone sampling from tokens and ASTs.

4.2 A Review of Dependence Graphs

A program dependence graph (PDG) [46] represents possible dependence relationships be-
tween statements in a program, with vertices representing statements and directed edges
representing control and data dependences. Informally, a statement s1 is control dependent
on a statement s2 if s2 is a branch predicate that controls the execution of s1. A statement
s1 is data dependent on a statement s2 if a value assigned to a variable x at s2 can later be
accessed from x at s1. (This requires that all control flow paths from s2 to s1 do not assign
a new value to x.)

PDGs approximate semantic dependencies between statements. They are not affected by
reordering statements in ways which preserve the semantics. Horwitz et al. [64] showed that,
under certain assumptions, if the PDGs of two programs are isomorphic then the programs
are equivalent. Giv-en Horwitz’s result and related results from Podgurski [113, 114], the
PDG is a good representation to detect code clones with renamed variables, semantics-
preserving statement re-orderings, and unrelated code insertions.

An important variant of the program dependence graph is the system dependence graph
(SDG) [65], which consists of procedure dependence graphs (pDGs), each representing an
individual subprogram, connected by inter-procedural dependence edges representing sub-
program calls. The case study described in Section 4.4 involves mining pDGs. Figure 4.1
shows an example procedure dependence graph. The dotted lines indicate control depen-
dencies and the solid lines indicate data dependencies.

To compute the pDGs used in this paper a prototype tool named jpdg was built. A
successor to JavaPDG [132], jpdg was created to improve the PDG representation for code
mining purposes. For instance, most dependence graphs place the arguments to operations
in the vertices of the graph. In the graphs produced by jpdg these are associated with

1https://github.com/timtadh/graple
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the edges (see Figure 4.1). jpdg is built on top of the Soot optimization framework [49]2,
and non-constant vertices map to Jimple instructions. Control dependencies are computed
using Cytron’s method [30]. Data dependences are computed using Upward Exposed Uses
analysis [104].

4.3 Sampling Dependence Clones

A dependence clone is duplicated code detected from the program dependence graph (PDG).
To detect dependence clones, identify subgraphs appearing in multiple locations in the PDG.

2http://sable.github.io/soot/

1 public class Fib {
2 public int fib(int x) {
3 int prev = 0;
4 int cur = 1;
5 if (x == 0) {
6 cur = 0;
7 } else {
8 for (int i = 1; i < x; i++) {
9 int next = prev + cur;

10 prev = cur;
11 cur = next;
12 }
13 }
14 return cur;
15 }
16 }

(a) Program to compute terms from the Fibonacci sequence.

public int Fib.fib(int)

this param 0

const '0'

const '1'

!=

const '0'

const '1'

return

int:0 (x)

>=

int:1 (x)

+

int:1 (prev)

int:2 (cur)

=

int:0 (cur) int:0 (cur)

const '0'

gotoconst '1'

int:1

int:0 (cur)

int:0 (i)

+

int:1 (i)

=

goto
int:0 (next)

int:1 (prev)
int:2 (cur)

int:0 (cur) int:0 (cur)

int:0 (i)
int:1 (i)

int:2

(b) Procedure dependence graph of Figure 4.1a.

Figure 4.1: Example procedure and procedure dependence graph. Solid lines are data dependencies. Dashed
lines are control dependencies. The labels on the data dependencies indicate the type of the data and its
usage context (ie. its parameter number). The data dependencies are also annotated with variable names
to aid in readability. c©Tim Henderson
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The problem of finding recurring subgraphs is called Frequent Subgraph Mining (FSGM) [25].
Frequent subgraph miners search for subgraphs which recur k times with k > 1.

Applying standard mining algorithms to program graphs is not straightforward. Software
engineers are potentially interested in subgraphs with very few repetitions. Small frequency
thresholds are uncommon in the applications typically considered in the data-mining liter-
ature. Our experiments on jgit3 (∼ 72 KLOC) have found that with a minimum frequency
setting of 5, there are over 11.8 million frequent subgraphs. We were unable to completely
mine jgit as we exhausted our disk space storing the patterns (∼ 1 TB). This mining
attempt, which used the vSiGraM algorithm [87], took over 12 days. We made another
attempt where the patterns were simply logged to the console instead of stored. During
this attempt, over 350 million patterns were discovered before the process was killed after
10 days. The application considered in Section 4.4 had similar results (¿ 10 million frequent
patterns before disk space exhaustion and ¿400 million patterns after 10 days of mining).

So, not only is it impractical in time and space to use an algorithm like vSiGraM to do
code clone detection it would not be possible for all patterns to be stored and individually
examined.

4.3.1 How Frequent Subgraph Mining Works

Standard frequent subgraph miners search for subgraphs that recur at least a specified
number of times in a graph database, which may contain one very large graph or many
smaller graphs [25]. Conceptually, miners work by enumerating the subgraphs of the graphs
in the database by traversing frequent connected subgraph lattice (see Fig. 4.2b). As each
subgraph is found its support must be computed. Informally, the support of a subgraph is
the number of embeddings that it has in the graph database.

Using subgraph-isomorphism checks to count support is expensive. A faster way to count
support is to store the embeddings of each subgraph. The stored embeddings can also be
used during the subgraph enumeration process to reduce the number of candidate patterns.
As each subgraph is produced it is “canonicalized.” The canonicalization process always
puts isomorphic graphs into the same form and thus neatly solves the graph isomorphism
problem. We use Bliss [77] for canonicalization.

4.3.2 From Mining to Sampling

Large PDGs may have a huge number of frequent subgraphs, but in applications of clone
detection it may be unnecessary to consider them all. We focus on two use-cases: (1)
developers want to manually examine mined clones, e.g., to propose refactorings, and (2)
developers and researchers want to answer questions about the whole population of clones
that could be mined given enough time and storage space.

In the first use-case, developers will have limited time to examine mined clones. Thus,
they will generally prefer to consider a small, diverse set of clones. In the second use-case, the
questions posed could be either objective (e.g., “What percentage of our code base is covered
by one or more frequent subgraphs?”) or subjective (e.g., “What proportion of potential
dependence clones do our programmers want to refactor?”). Both kinds of questions can
often by answered by examining a representative sample of frequent subgraphs. If care
is taken in designing the method to select the sample, then statistical estimation [141]
techniques can be used to estimate unbiased answers.

3https://github.com/eclipse/jgit
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1 # param G : the graph being mined
2 # param bottom : lattice node for the empty subgraph
3 # param min_support : int, minimum number of embeddings
4 # returns : leaf node of the frequent connected subgraph
5 # lattice which is a maximal frequent subgraph
6 def walk(G, bottom, min_support):
7 v = u = bottom
8 while v is not None:
9 u = v

10 v = rand_select(get_children(G, u, min_support))
11 return u
12
13 # param u : a lattice node
14 # returns : a list of lattice nodes which are 1 edge
15 # extensions of u
16 def get_children(G, u, min_support):
17 exts = list()
18 for emb in u.embeddings:
19 for a in embedding.V:
20 for e in G.edges_to_and_from(a):
21 if not emb.has_edge(e):
22 exts.append(emb.extend_with_edge(e))
23 groups = group_isomorphs(exts)
24 return [ LatticeNode(lbl, group)
25 for lbl, group in groups.iteritems()
26 if len(group) >= min_support ]
27
28 # param subgraphs : a list of subgraphs of G
29 # returns : map label -> list of isomorphic subgraphs.
30 def group_isomorphs(subgraphs):
31 isomorphs = dict()
32 for sg in subgraphs:
33 label = bliss.canonical_label(sg)
34 if label not in isomorphs:
35 isomorphs[label] = list()
36 isomorphs[label].append(sg)
37 return { label: minimum_image_supported(group)
38 for label, group in isomorphs.iteritems() }

Listing 4.1: GRAPLE’s sampling procedure

We developed GRAPLE to address both use-cases. It samples randomly from the space of
maximal frequent subgraphs (a frequent subgraph is maximal if no larger frequent subgraph
can be constructed from it). The sampling procedure is well defined and allows us to compute
selection probabilities for subgraphs, which can be used in statistical estimators such as the
Horvitz-Thompson (HT) unequal probability estimator [141]. Furthermore, developers can
use GRAPLE to collect small, diverse sets of potential dependence clones from an entire
code base or from parts of interest. The same basic algorithm can also be applied to item-set,
sub-sequence, and sub-tree mining.

4.3.3 Sampling Maximal Frequent Subgraphs

All frequent pattern miners traverse the frequent pattern lattice, which for subgraph miners
means the frequent connected subgraph lattice (see Figure 4.2). Each node in the lattice
represents a frequent subgraph, with the directed edges connecting A to B if adding one
edge to A produces a graph isomorphic to B. Miners traverse the lattice in either a breadth
first or depth first manner to find all of the frequent subgraphs.

Since we seek a random sample of the maximal frequent subgraphs, it is unnecessary
to traverse the whole lattice. Instead, we make n partial traversals where n is the desired
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sample size. Each traversal is an unweighted random walk over the lattice, which proceeds
from smaller frequent subgraphs to larger ones. The walk terminates when it reaches a
maximal frequent subgraph and that pattern and its embeddings are added to the sample.
This procedure is outlined in Listing 4.1.

The most expensive part of frequent subgraph mining is extending a pattern with e edges
to patterns with e+ 1 edges and computing support of each of those extensions. Extensions
are computed on lines 17-22 by considering all possible extensions for each embedding. The
lattice nodes hold a list of their embeddings, making this computation relatively cheap.
After all possible extensions are computed they are grouped by their canonical labeling
(lines 30-36) as computed by Bliss [77]. The groups are then minimized (lines 37-38) to
remove many of the overlapping embeddings using minimum image support [19]. If a group
contains enough embeddings to be considered frequent then a lattice node is created and it
is returned as a child (lines 24-26).

Generalizing results from the sample of maximal frequent patterns to the population of all
maximal frequent pattern requires taking into account unequal sample inclusion probabilities.
In order to do this a correction factor or weight is applied to each sampled value. The weight
for the value yi of the ith population unit is the inverse of the unit’s probability πi of inclusion
in the sample. With these weights, the Horvitz-Thompson (HT) estimator [63], denoted τ̂π,
can be used to make an unbiased estimate of the population total τ for the study variable,
and a simple variant µ̂π can be used to unbiasedly estimate the population mean µ. Let ν
be the number of distinct units in the sample. Then

τ̂π =

ν∑
i=1

y i
πi

(4.1)

Observe that units that are rarely sampled will have their values boosted substantially
by the weights 1/πi, while units which are commonly sampled have their values boosted
less. Thompson [63] provides formulas for the HT estimator’s mean and variance and for
computing confidence intervals for estimates.

When sampling n units with replacement, the probability πi that the ith population unit
is included in the sample can be computed from the probability pi that unit i is selected on
a particular random walk:

πi = 1− (1− pi)n (4.2)

4.3.4 Computing the Probability of Selecting a Maximal Subgraph

In order to use the HT estimator outlined in the previous section, it is necessary to determine
the probability pi that the ith maximal frequent pattern JHiK is selected on a random walk
of the k-frequent connected subgraph lattice (k-LG). We compute these probabilities using
the theory of Markov chains.

A finite-state Markov chain [54] consists of a finite set of states, S = {s1, . . . , sn}, and a
matrix P, called the transition matrix, where Pi,j gives the probability of a state transition
from si to sj . A Markov chain moves from state to state according to the probabilities
in the transition matrix. A random walk in a graph G can be viewed as a Markov chain
whose set of states S corresponds to the vertex set VG. An absorbing Markov chain [54] is
a special type of Markov chain which always ends in a state that cannot be exited, called
an absorbing state (see Appendix A.1).
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Figure 4.2: Figure 4.2b is a connected subgraph lattice of Figure 4.2a including only subgraphs with 2 or
more embeddings in Figure 4.2a. The boxed nodes in the graph show the embeddings of the boxed subgraph
in the lattice. c©Tim Henderson

To construct an absorbing Markov chain from the lattice k-LG, let the states of the
chain be the vertices of the lattice (i.e., the frequent patterns JHiK). To model how the
algorithm in Listing 4.1 transitions from one lattice node to the next by uniformly selecting
a neighboring node, let the transition probability for an edge vi → vj be the reciprocal of
the out-degree of vi:

Pi,j =


1∑

k Ei,k
if Ei,j = 1

1 if i = j ∧ vi is maximal
0 otherwise

(4.3)

The selection probability pi of JHiK is the probability that state si absorbs the Markov
process starting at the bottom lattice node. To compute pi, arrange the transition matrix
P into canonical form such that the transient states come before the absorbing states:

P =

[ TR. ABS.

TR. Q R
ABS. 0 I

]
(4.4)

Qi,j is the probability of transitioning from a transient state si to transient state sj . Ri,j

is the probability of transitioning from transient state si to absorbing state st+j where t is
the number of transient states. I is the identity matrix and 0 is the zero matrix, as once
a Markov process enters an absorbing state it never leaves. The probability of a process
starting at the bottom of the lattice s0 and being absorbed by state si with zero or more
transitions (

?−→) is [54]:

pi = Pr[s0
?−→ si] = (P∞)0,i = ((I−Q)−1R)0,(i−t) (4.5)

37



CHAPTER 4. SAMPLING CODE CLONES WITH GRAPLE

Computing pi with a submatrix of P

To compute pi using Equation 4.5, the entire matrix P needs to be constructed. It turns out
only a submatrix of P is needed to compute the probability pi of selecting a frequent pattern
JHiK using the algorithm in Listing 4.1. The required rows and columns of P correspond to
the vertices of k-LG which are subgraphs of Hi.

Lemma 4.1. Let si be an absorbing state in a Markov chain formed from a k-frequent
connected subgraph lattice of a graph G. The selection probability pi = (NR)0,(i−t) can be
computed from a sub-matrix of the transition matrix P containing only those states from
which si can be reached.

Proof. If there does not exist a path vj
?−→ vi in the k-frequent connected subgraph lattice

k-LG then the product of its adjacency matrix entries corresponding to any sequence of
edges possibly connecting vj to vi must be zero. Therefore, summing over all such edge
sequences, we have: ( ∞∑

n=1

n∑
k1=1

...

n∑
kn=1

Ej,k1

(
n−1∏
i=1

Eki,ki+1

)
Ekn,i

)
= 0 (4.6)

The probability of a Markov chain that starts in state sj eventually reaching state si is

Pr[sj
?−→ si] =

∞∑
n=1

n∑
k1=1

...

n∑
kn=1

Pj,k1

(
n−1∏
i=1

Pki,ki+1

)
Pkn,i (4.7)

If there does not exist a path in the lattice from vj to vi then this probability is zero.
The selection probability formula pi = (NR)j,(i−t) can be rewritten, with t indicating the
number of transient nodes, as shown in Equation 4.8.

pi =

t∑
k=1

Nj,kRk,(i−t) (4.8)

Using the definition of the fundamental matrix this equation can be rewritten as follows
obtaining Equation 4.12.

pi =

t∑
k=1

(
∞

lim
n=1

(
I +

n∑
e=1

Qe

))
j,k

Rk,(i−t) (4.9)

pi =

t∑
k=1

( ∞∑
n=1

t∑
k1=1

...

t∑
kn=1

Qj,k1

(
n−1∏
x=1

Qkx,kx+1

)
Qkn,kRk,(i−t)

)
(4.10)

pi =

t∑
k=1

( ∞∑
n=1

t∑
k1=1

...

t∑
kn=1

Pj,k1

(
n−1∏
x=1

Pkx,kx+1

)
Pkn,kPk,i

)
(4.11)

pi =

∞∑
n=1

t∑
k1=1

...

t∑
kn=1

Pj,k1

(
n−1∏
i=1

Pki,ki+1

)
Pkn,i (4.12)

Note, Equation 4.12 is equivalent to the right hand side of Equation 4.7. Since Pr[sj
?−→

si] = 0 if there is no path in the lattice from vj to vi, vertices from which si cannot be
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reached have no effect on the computation of pi and can be omitted. Omitting vertices vj
for all vj where there does not exist a path in the lattice to vi corresponds to removing the
jth row and column from P. Therefore, only a sub-matrix of P containing those states from
which si can be reached are needed.

Lemma 4.2. The states from which an absorbing state si can be reached in a Markov chain
formed from a k-frequent connected subgraph lattice k-LG correspond to the vertices of the
connected subgraph lattice of the graph represented by state si.

Proof. A vertex v of k-LG represents a graph. Given two vertices u and v of k-LG, u reaches
v if and only if a sequences of edges can be added to u such that u extended with those
edges is isomorphic to v (e.g. u + ε1 + ε2 + ... ∼= v). Thus, the statement u reaches v in
k-LG is equivalent to saying u is a subgraph of v. If u is a subgraph of v then it will be a
vertex in v’s connected subgraph lattice Lv by the definition of connected subgraph lattice.
Therefore, all states in which can reach si must be correspond to subgraphs of si and are
therefore in si’s connected subgraph lattice.

Theorem 4.1. Let JHiK be a maximal k-frequent pattern sampled from k-LG. Let si be
the corresponding state in the Markov chain formed from k-LG. The selection probability of
JHiK, pi = ((I−Q)−1R)0,(i−t), can be computed from the submatrix of P that includes only
the rows and columns that correspond to subgraphs of Hi.

Proof. By Lemma 4.2 all states of the Markov chain which can reach si correspond to
subgraphs of si. By Lemma 4.1 the only rows and columns of P which are necessary are
the rows and columns for states which can reach si. Therefore, the sub-matrix of P that is
needed only contains states which correspond to subgraphs of Hi and are in the connected
subgraph lattice LHi

.

As a consequence of Theorem 4.1, only a sub-matrix of P is needed to compute pi for
any given i, and that sub-matrix is exactly the one which corresponds to the connected
subgraph lattice computed from the target subgraph.

Example 4.1. The lattice in figure 4.2 corresponds to the following matrix P arranged in
canonical form. Note: the empty spaces in the matrices represent the number 0.



0 1 2 3 4 5 6 7 8 9 10 11 12

0 .33 .33 .33
1 .5 .5
2 .25 .25 .25 .25
3 .33 .33 .33
4 1
5 1
6 .5 .5
7 .5 .5
8 .5 .5
9 1
10 1
11 1
12 1


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If the subgraph H11 = a→ c→ c, corresponding to state s11, is sampled the following would
be the submatrix of P needed to compute p11.

PH11 =



0 2 3 6 8 11

0 .33 .33
2 .25
3 .33 .33
6 .5
8 .5
11 1


The fundamental submatrix would be:

NH11 = (I−QH11)−1 =



0 2 3 6 8

0 1 .33 .33 .1914 .1089
2 1 .25
3 1 .33 .33
6 1
8 1


Computing NH11RH11 yields:

NH11RH11 =



0 2 3 6 8

0 1 .33 .33 .1914 .1089
2 1 .25
3 1 .33 .33
6 1
8 1




11

0

2

3

6 .5
8 .5

 =



11

0 .150
2 .125
3 .333
6 .5
8 .5


The probability for starting at the root node of the lattice (the empty subgraph H0) and
ending at H11 is:

p11 = Pr[s0
?−→ s11]

= (P∞)0,11

= ((I−Q)−1R)0,11−9

= ((I−QH11)−1RH11)0,0

= .150

Computing the submatrix of P for Hi requires finding every connected subgraph of Hi

which is much less work than mining all frequent subgraphs of G. Unfortunately, computing
the submatrix is only tractable for subgraphs with fewer than 20 edges (which can induce
submatrices as large as 220 × 220). In future work, we intend to estimate pi rather than
compute it exactly, in order to handle much larger subgraphs. Note that our sampling
procedure does not have a size limitation (it has found frequent subgraphs with over 100
edges); only the probability computation has this limitation.

4.4 Case Study: Assessment of Clone Relevance

We conducted a preliminary case study to see if GRAPLE could help us assess the usefulness
of PDG-based code clone detection to developers. Our study assessed the relevance of
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dependence clones in a commercial Android application with ∼ 73 KLOC that had been
under continuous development for 5 years. Nine developers participated in the study. The
study was conducted as a survey which asked a set of 10 questions about each group of
mined clones (two questions are in Figure 4.3). The clones were displayed as both graphs
and highlighted regions of source code. The goal was to estimate the proportions of frequent
subgraphs that represent duplicate code and that developers would act upon.

The survey involved 104 dependence clone groups sampled using GRAPLE, which was
configured to require frequent subgraphs to have minimum support 5 and to contain at least
8 vertices. As sampling was done with replacement, 415 patterns were sampled, with 122
unique patterns. Of the 122, 104 with fewer than 20 edges were retained as discussed in
Section 4.3.4. The sampling was done on an computer with an 8 core Intel Xeon processor,
64 GB of main memory and a 250 GB hard drive. It took 138 seconds to collect the samples
and 23.2 hours to compute the selection probabilities used in the HT estimator. Computing
the selection probabilities was made possible by using SuiteSparse4 for large sparse matrix
inversion.

At the beginning of the study, the participants were given a presentation on code clones.
Code clones were somewhat familiar to these developers, as they utilize a commercial static
analysis tool, SonarQube, which makes use of a clone detector based on Hummel et al.’s
algorithm [69]. SonarQube detected none of the clones the developers reviewed in the study.
In an ideal study each clone group would have been reviewed by each participant, but in
order to maximize the number of clones reviewed, each clone group was only reviewed by a
single participant.

4.4.1 Study Results

All of the 104 clone groups were reviewed by the participating developers. Despite the
approximately unbiased nature of the modified Horvitz-Thompson (HT) estimator we used
[129], its results can still be skewed if there is high variance in the inclusion probabilities.
The best way to address such skew is to collect more data. As this was not possible the next
best option of removing the outliers was taken. Thus two of the clone groups with outlying
selection probabilities were discarded.

4 http://faculty.cse.tamu.edu/davis/suitesparse.html.
See Davis’ 2004 paper for details [33].

1. Do the highlighted portions of the code fragments, in conjunction with the associated graph,
represent duplicated, similar or cloned code?

(a) Yes
(b) No

2. If you answered Yes to question 1, would you:

(a) Create a story card to refactor this code?
(b) Add a comment to consider refactoring on next change?
(c) Add a note about duplicate code even if it cannot be refactored?
(d) Ignore it?
(e) Take some other action?

Figure 4.3: The two critical survey questions
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For survey question 1, the estimate of the proportion of all mineable dependence clones
for which the answer would be Yes if they were all examined was 61%, with a 95% confidence
interval of 42%−78%. For survey question 2, the estimate of the proportion of all mineable
clones for which one of the “action answers” (2.a, 2.b, 2.c, and 2.e) would be given if all of
the clones were examined was 14% (which is smaller than the sample proportion of 33%),
with a 95% confidence interval of 0%− 33%.

It should be emphasized that the results for survey question 1 do not actually mean
that our frequent subgraph miner produced erroneous results 39% of time. It did in fact
identify only 5-frequent PDG subgraphs. However, the developers had their own subjective
criteria for deciding whether the corresponding code was duplicated. For example, Figure
4.4 shows two simplified clones sampled from the application. Figure 4.4a was identified
by the developer who reviewed it as the double-checked locking pattern [130]. Although
widely used throughout the code base, the reviewer indicated that it was too general to be
a code clone, because each instance exhibited context-specific specialization. Figure 4.4d
represents a class of different clones involving user-interface state modifications. In this
clone, the color of a button is changed based on the current theme. As all elements of the
application are themed to support multiple brands of the program, this code was duplicated
in many locations (often non-contiguously). The reviewers recommended it for refactoring
to centralize the theming decision.

Thus, the results for survey questions indicate that (a) about 61% of mineable depen-
dence clones in the project would be judged by developers to be duplicate code and (b) the
developers would want to take action for only about 14% of mineable clones. Assuming that
the developers’ judgments about the clones were justified, the difference between these two
estimates suggests that for this project, additional filtering is needed to eliminate clones
that are not of interest to developers. Further study of the sampled dependence clones and
discussions with the developers about them might suggest what filtering criteria are needed.
Note that in developers’ responses to a followup questionnaire in our study, they indicated
that they felt the exercise was useful and that they would like to periodically review new
findings from a PDG-based tool.

Further investigations are needed to fully understand these results in the context of other
clone detection techniques. Unlike many detectors ours did not employ any filtering or
normalization heuristics, making direct comparisons to previous results difficult. In future
studies, GRAPLE could be applied to AST and token representations, allowing a direct
comparison. The effect of filtering and normalization can also be estimated using GRAPLE.

4.5 Conclusion

We have presented GRAPLE, a framework for randomly sampling unique frequent subgraph
from directed labeled graphs. Our sampling method enables unbiased estimation of statistics
characterizing the whole population of frequent subgraphs (without enumerating it). The
results of our case study suggest that GRAPLE will prove useful to software engineering
researchers and to developers who apply advanced analytical methods to better understand
large code bases. In future work, we plan to estimate the sample inclusion probabilities
needed for Horvitz-Thompson estimation rather than computing them exactly to enable
studies involving larger patterns.
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!=

= new

!=

goto =

exit monitor

enter monitor

const 'null'

null:1

const 'null'

null:1

java.lang.Object:0

(a) Double Checked Locking. Used to create singletons.
Not considered a code clone by the reviewer.

const '0'

==
int:1

cast

call Z
Y:1

gotocall java.util.Iterator.hasNext call java.util.Iterator.next X

call java.util.List.iterator
java.util.Iterator:1 java.util.Iterator:1boolean:0

java.lang.Object:1

(b) An iterator protocol generated from a for-each loop. Not considered a
code clone by the reviewer.

const '0' ==int:1

const '0' call Alert.setServerGenerated
int:0

=

call Alert.setMessage
Alert:1

Alert:1 call Alert.setCode

Alert:1
call Alert.setTitleAlert:1

new
Alert:0

call Alert.<init>
Alert:0

(c) Creating an application specific Alert object. Considered a code clone by
the reviewer.

const '0'
==

int:1

param 1 boolean:0

goto

call Resources.getColor

themeColor
call Button.setColorcall Button.setColor

call getResources

int:0

const '7'
int:1

int:0

Resources:2

(d) Setting a button color depending on theme choice.
Considered a code clone by the reviewer.

Figure 4.4: Four clones discovered in the study. Package names have been removed and application details
have been obfuscated.
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Chapter 5

Rethinking Dependence Clones

5.1 Introduction

Fragments of similar code are typically scattered throughout large code bases [125]. These
repeated fragments or code clones often result from programmers copying and pasting code.
Code clones (or just clones) may also result from limitations of a programming language,
use of certain APIs or design patterns, following coding conventions, or a variety of other
causes. Whatever their causes, existing clones need to be managed. When a programmer
modifies a region of code that is cloned in another location in the program, they should
make an active decision whether or not to modify the other location. Clearly, such decisions
can only be made if the programmer is aware of the other location.

In general, there are 4 types of code clones [125]:

Type-1 Clones – Identical regions of code (excepting whitespace and comments).

Type-2 Clones – Syntactically equivalent regions (excepting names, literals, types, and
comments).

Type-3 Clones – Syntactically similar regions (as in Type-2) but with minor differences
such as statement additions or deletions.

Type-4 Clones – Regions of code with functionally equivalent behavior but possibly with
different syntactic structures.

Much of the research on code clone detection and maintenance has been geared toward
Type-1 and Type-2 clones [16, 119, 124, 125], as they are easier to detect and validate than
Type-3 and Type-4 clones. The two most popular detection methods involve searching for
clones in token streams [79, 128] and abstract syntax trees (ASTs) [72], respectively.

An alternative approach to clone detection is to search for them in a Program Dependence
Graph (PDG) [46], which represents the control and data dependences between statements
or operations in a program. Recurring subgraphs in PDGs represent potential dependence
clones (see Figure 5.1 on page 47, which is examined in Section 5.2). Some of the previous
work [61, 83, 85] on PDG-based clone detection used forward and backward path-slicing
to find clones. This method can detect matching slices, but it cannot detect all recurring

1Note, portions of this chapter originally appeared as [60] https://doi.org/10.1109/IWSC.2017.7880512.

44



CHAPTER 5. RETHINKING DEPENDENCE CLONES

subgraphs. The latter can be identified using frequent subgraph mining (FSM) [87]. However,
for low frequency thresholds, the number of PDG subgraphs discovered by FSM may be
enormous. For example, we found that for a Java program with 70,000 lines of code (LOC),
over 700 million PDG subgraphs with 5 or more instances were discovered by FSM.

Since it is infeasible for developers to examine so many subgraphs, we previously de-
veloped GRAPLE [59], an algorithm to select representative samples of maximal frequent
subgraphs. In this paper, the core sampling process remains the same as in GRAPLE but
we present a new algorithm for traversing the k-frequent subgraph lattice (see Section 5.3).
One tricky aspect of FSM is how to define exactly what “frequency” means in a large con-
nected graph [19]. In order to handle pathological cases that occur in real programs, we
introduce a new metric to measure subgraph frequency (or “support”), called the Greedy
Independent Subgraphs (GIS) measure. Section 5.4 details the first empirical examination
of the scalability and speed of sampling dependence clones from large programs. The study
showed that our new system can quickly sample from programs with 500 KLOC of code
and successfully sample from programs with perhaps 2 MLOC. Finally, since at times the
sampling algorithm may return several potential clones, which are quite similar to each
other, we evaluate the performance of a density-based clustering algorithm on the samples
collected.

5.2 A Motivating Example

Figure 5.1 shows an example dependence clone extracted from jGit, a Java implementation
of the Git version control system. The clone was identified from the PDG of jGit produced
by our PDG-generator jpdg [59]. PDG-based clone detection techniques, unlike techniques
based on syntactic representations, do not distinguish between code fragments that differ
only because of dependence-preserving statement re-orderings, which also preserve seman-
tics [114]. Hence, using only static information, they detect semantically-equivalent clones
that are not detected by syntactically-based techniques. (Of course, they cannot detect all
semantically-equivalent code fragments.)

Three functions are shown in Figure 5.1 (two of them are partial) that parse PATCH
files. The PATCH file format is a plain text format describing the differences (line by line)
between two versions of a piece of software. There are several varieties of PATCH files
including: “Traditional”, “Combined”, and “GIT”, all of which jGit can parse. Both the
Combined and GIT formats are supersets of the Traditional format, which leads to some
amount of duplication, especially involving headers. Figure 5.1(d) shows a graph pattern
“explaining” the highlighted duplication in the three functions in terms of a subgraph of
jGit’s PDG, which represents code detecting the start of a Traditional PATCH header.

However, the duplication in Figure 5.1 isn’t due to a simple copy-paste. Each function
contains unique context-specific code interleaved with portions that detect the start of a
Traditional header. Figure 5.1(a) contains the function parseTraditionalHeaders, which uses
the pattern to drive the parser to extract the changed filenames. Function parseFile in
Figure 5.1(b) drives the parsing process for all file types and uses the pattern to detect
the start of each “hunk.” In contrast to the function in 5.1(a), parseFile reorders some of
the statements and interleaves significant new functionality between statements. Finally,
function parseHunks in Figure 5.1(c) exhibits a third statement ordering distinct from the
first two. It uses the pattern to detect when it should stop parsing the current hunk.

Figure 5.1 illustrates that dependence-based clone detection can discover subtle pro-
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gramming patterns that are difficult to detect using other program representations due to
differences in the ordering of statements within pattern instances and to the interleaving of
statements from within the pattern with other statements.

5.3 Sampling Dependence Clones

Dependence clones can be found by searching for “frequent” subgraphs of a PDG. An
advantage of using FSM, rather than some other data mining techniques, is that lower
frequency thresholds (e.g., 2-5) can be used without increasing the number of irrelevant
patterns that are found [22]. This is because FSM helps ensure that the statements in a
pattern are semantically related – not just co-occurring.

The process of finding frequent subgraphs of G can be viewed as a traversal of a lattice of
subgraphs. The subgraph relation · v · induces a Connected Subgraph Lattice LG represent-
ing all the possible ways of constructing G from the empty subgraph by adding one edge at
a time. LG is a digraph where each vertex u represents a unique connected (ignoring edge
direction) subgraph of G. There is an edge from u to v in LG if adding some edge ε to u
creates a subgraph u+ ε of G that is isomorphic to v, v ∼= u+ ε. The k-Frequent Connected
Subgraph Lattice k-LG is a Connected Subgraph Lattice containing only those subgraphs
that are at least k frequent in G according to some support measure σ.

The most natural definition of the support measure is σ(JHKG) = |JHKG|, i.e., the num-
ber of unique embeddings in H’s isomorphism class. Unfortunately, this definition does
not satisfy an important property of suitable support measures, called the Downward Clo-
sure Property [19]. A measure that is commonly used instead is Minimum Image Support
(MNI) [19]. However, some pathological cases involving patterns with automorphisms (non-
trivial isomorphisms from a subgraph to itself) and with overlapping embeddings can cause
exponential-time computations when MNI is used. We have found that these actually occur
in real programs. To circumvent this problem we use an unsound support measure called
Greedy Independent Subgraphs (GIS).

An embedding n is directly connected to another embedding m if any vertex in n is
also used in m. The embedding n is connected (possibly indirectly) to another embedding
x if there is some sequence of embeddings y1...yn such that: the embedding n is directly
connected to the embedding y1, y1 is directly connected to y2, and so on, until yn−1 is
directly connected to yn and yn is directly connected to x. An embedding n is said to be
independent of an embedding x if they are not connected by any sequence of embeddings.
Recall that automorphic patterns with overlapping embeddings cause problems for MNI
since there may be millions of unique embeddings. However, one can short-circuit this
computation by computing the number of independent groups of embeddings in a greedy
fashion. This yields the metric GIS, which is implemented by the function gis pruner in
Listing 5.1.

5.3.1 Sampling Frequent Subgraphs

SamplingN frequent subgraphs can be accomplished by an unweighted forward random walk
on the connected frequent subgraph lattice [59]. The process is outlined in Listing 5.1 and is
based on our previous work on GRAPLE [59]. Note the listing is in Python for brevity but
the actual implementation is in the Go programming language. The core sampling process
(lines 1-9) remains the same as in GRAPLE but there is a new algorithm for traversing the
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1 int parseTraditionalHeaders(int ptr, final int end) {
2 while (ptr < end) {
3 final int eol = nextLF(buf, ptr);
4 if (isHunkHdr(buf, ptr, eol) >= 1) {
5 // First hunk header;
6 break; // break out and parse them later.
7 } else if (match(buf, ptr, OLD NAME) >= 0) {
8 parseOldName(ptr, eol);
9 } else if (match(buf, ptr, NEW NAME) >= 0) {

10 parseNewName(ptr, eol);}
11 } else {
12 // Possibly an empty patch.
13 break;
14 }
15 ptr = eol;
16 }
17 return ptr;
18 }

(a) org.eclipse.jgit.patch.FileHeader (line 496)

1 int parseFile(byte[] buf, int c, final int end) {
2 while (c < end) {
3 if (isHunkHdr(buf, c, end) >= 1) {
4 //Needs header
5 error(buf, c,
6 JGitText.get().hunkDisconnectedFromFile);
7 c = nextLF(buf, c);
8 continue;
9 }

10 // OMITTED: Valid git style patch?
11 final int n = nextLF(buf, c);
12 if (n >= end) {
13 // Patches cannot be one line long
14 return end;
15 }
16 if (n - c < 6) {
17 // A valid header is >= 6 bytes
18 c = n;
19 continue;
20 }
21 if (match(buf, c, OLD NAME) >= 0
22 && match(buf, n, NEW NAME) >= 0) {
23 // Probably a traditional patch. check "@@ -"
24 final int f = nextLF(buf, n);
25 if (f >= end)
26 return end;
27 if (isHunkHdr(buf, f, end) == 1)
28 return parseTraditionalPatch(buf, c, end);
29 }
30 c = n;
31 }
32 return c;
33 }

(b) org.eclipse.jgit.patch.Patch (line 172)

1 int parseHunks(final FileHeader fh, int c, final int end) {
2 final byte[] buf = fh.buf;
3 while (c < end) {
4 // If we see a file header at this point, we have
5 // all of the hunks for our current file. We should
6 // stop and report back with this position so it
7 // can be parsed again later.
8 if (match(buf, c, DIFF_GIT) >= 0)
9 break;

10 if (match(buf, c, DIFF_CC) >= 0)
11 break;
12 if (match(buf, c, DIFF_COMBINED) >= 0)
13 break;
14 if (match(buf, c, OLD NAME) >= 0)
15 break;
16 if (match(buf, c, NEW NAME) >= 0)
17 break;
18

19 if (isHunkHdr(buf, c, end) == fh.getParentCount()) {
20 // OMITTED: Parses the hunk
21 continue;
22 }
23 final int eol = nextLF(buf, c);
24 if (fh.getHunks().isEmpty()
25 && match(buf, c, GIT_BINARY) >= 0) {
26 fh.patchType = FileHeader.PatchType.GIT_BINARY;
27 return parseGitBinary(fh, eol, end);
28 }
29 if (fh.getHunks().isEmpty()
30 && BIN_TRAILER.length < eol - c
31 && match(buf, eol-BIN_TRAILER.length, BIN_TRAILER)
32 >= 0
33 && matchAny(buf, c, BIN_HEADERS)) {
34 // The patch is a binary file diff, with no deltas.
35 fh.patchType = FileHeader.PatchType.BINARY;
36 return eol;
37 }
38 c = eol; // Skip this line and move to the next.
39 }
40 // OMITTED: Check for empty patch which might be binary.
41 }

(c) org.eclipse.jgit.patch.Patch (line 272)

=

call nextLF

int:2

>=

int:0

return

int:0

call match

int:2int:0

<

goto

<

int:0

OLD_NAME

byte[]:3

goto

<

call match

NEW_NAME

0

int:1

0

int:1int:0

byte[]:3

(d) Graph pattern explaining the code duplica-
tion

Figure 5.1: The highlighted regions above illustrate semantic code duplication in jGit (commit efd91ef8a),
which was not found by the clone detector CCFinderX [79]. jGit is a Java implementation of the Git version
control system. The three functions shown parse portions of PATCH files. The function in 5.1a parses the
header of traditional PATCH files. The function in 5.1b (which has portions removed) parses all types of
PATCH files used by Git (and “drives” the rest of the parsing functions). The function in 5.1c (which has
portions removed) parses the hunks from the PATCH file looking for headers to signal the start of the next
hunk. The graph in 5.1d is a frequent subgraph found in the PDG of jGit (produced by jpdg from JVM
bytecode) and is a subgraph of the pDGs of these functions. In the graph, dotted lines represent control
dependences. Solid lines represent data dependences and are annotated with their types and usage context.
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1 def sample(N, graph, min_support):
2 for _ in xrange(N):
3 yield unweighted_random_walk(G, min_support)
4
5 def unweighted_random_walk(G, min_support):
6 prev = cur = G.root_lattice_node(min_support)
7 while cur is not None:
8 n = randchoose(cur.children()); prev = cur; cur = n
9 return prev

10
11 class LatticeNode(object):
12 def __init__(self, G, sg, embs, exts):
13 self.graph = G
14 self.subgraph = sg
15 self.supported_embeddings = embs
16 self.extensions = exts
17 def children(self):
18 G = self.graph
19 for sg_ext in self.extend():
20 support, exts, embs = exts_and_embs(G, sg_ext)
21 if support >= min_support:
22 yield LatticeNode(G, sg, embs, exts)
23 def extend(self):
24 exts = set()
25 for ext in self.extensions:
26 exts.add(self.subgraph.extend(ext))
27 return exts
28
29 def exts_and_embs(G, sg):
30 embs = list(); exts = set(); seen = set()
31 for emb in find_embeddings(G, sg, gis_pruner(seen)):
32 for emb_idx in embs.idxs:
33 for edge in G.children_of(emb_idx):
34 add_ext(G, exts, emb, edge, emb_idx, -1)
35 for edge in G.parents_of(emb_idx):
36 add_ext(G, exts, emb, edge, -1, emb_idx)
37 embs.append(emb)
38 return gis_support(embs), exts, embs
39
40 def find_embedddings(G, sg, prune_fn=None):
41 edges = spanning_tree(G, sg)
42 for edge in sg.edges:
43 if edge not in edges: edges.append(edge)
44 stack = list()
45 vembs = vertex_embeddings(G, sg, edges[0].src)
46 for emb_idx in vembs:
47 stack.append((ListNode(start_idx, emb_idx), 0))
48 while len(stack) > 0:
49 cur, eid = stack.pop()
50 if prune_fn is not None and prune_fn(cur):
51 continue
52 if eid >= len(spanning_edges):
53 yield embedding_from_ids(cur)
54 else:
55 for n in extend_embedding(G,sg,cur,edges[eid])
56 stack.append((n, eid+1))
57
58 def gis_pruner(seen):
59 def gis_prune(cur):
60 for n in cur:
61 if n.emb_idx in seen:
62 for m in cur: seen.add(m.emb_idx)
63 return True
64 return False
65 return gis_prune

Listing 5.1: Sample N k-frequent subgraphs.
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k-frequent subgraph lattice. The new algorithm incorporates the GIS support metric and
pruning strategy into its subgraph matching algorithm find embeddings. The algorithm also
merges the support and candidate extension computations in exts and embs.

In Listing 5.1, the function sample does N walks over the frequent subgraph lattice by
calling unweighted random walk repeatedly. Each walk starts at a LatticeNode representing the
empty subgraph. In every step of the walk a call is made (line 8) to LatticeNode.children(),
which computes frequent super-graphs of the graph represented by the current LatticeNode.
One super-graph is selected at random to use for the next step. The walk terminates when
there are no frequent super-graphs. The children method computes candidate frequent
super-graphs using the extend method. Each candidate is computed from an “extension”,
which is obtained by adding a single edge to the graph represented by the LatticeNode. After
the candidates are computed, each one must be checked to see if it is frequent. This is
done by the exts and embs function, which computes the frequency (support), the candidate
one-edge extensions, and the supported embeddings for the candidate frequent subgraph.

To compute the support for a subgraph, all of its embeddings need to be found. This is
implemented by the find embeddings method, which solves the subgraph matching problem.
This method implements a back-tracking tree search procedure. The nodes in the search
are partial subgraph isomorphism mappings. The search tree for a subgraph H has height
|EH |, where |EH | is the number edges in H. The search starts at a node mapping a single
vertex in H to some vertex with the same label in the graph G. It proceeds edge by edge,
building up a mapping until a full mapping is obtained or back-tracking is performed by
discarding the current mapping and considering another partial mapping. If the gis pruner
is supplied as the pruning function, prune fn, to find embeddings then on line 50 there is a
chance to discard the current mapping. GIS discards the mapping if any of the mapped
vertices in it have already appeared in a completed mapping.

While not shown in the listing, the implementation contains several other optimizations
to the embedding search. For instance, it uses a lightweight index to ensure that candidate
vertices used to extend the current embedding have at least the degree of the matching
subgraph vertex.

5.4 Evaluation

A new dependence-clone sampling system was implemented using the ideas described in
Section 5.3.1, and it was evaluated in an empirical study. The study examined samples
of 100 potential code clones from the eight subject programs described in Table 5.1. The

Table 5.1: The datasets used in the study. KLOC – Kilo Lines of Code.

Dataset KLOC Nodes Edges Description
ExprCalc 0.8 1,110 2,162 Arithmetic calculator
Zookeeper 32.4 17,028 32,691 Distributed KV store
DDH 19.3 36,384 65,874 Anonymized

prorietary application
BCEL 28.6 52,731 108,542 JVM bytecode lib.
jGit 72.1 136,716 300,550 GIT in Java
Tomcat 220.7 377,657 806,824 Web server
hBase 561.4 442,063 981,577 Database
OrientDB N/A 2,022,640 3,476,158 Database & all

dependencies.
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(h) OrientDB

Figure 5.2: Execution time to sample 100 dependence clones from the subject programs. Box and whisker
diagrams of execution time in seconds of 50 runs of the Unweighted Random Walk sampling algorithm; each
run collected a sample containing 100 frequent subgraphs. The number on the top of the axis is the size (in
# of edges) of the largest dependence clone found. The number on the bottom axis is the minimum support
(frequency) used.

sample size was chosen to represent the maximum number of clones a single developer
would likely be able to review in a day. The study considered code cloned in at least five
locations as well as code cloned in at least two locations, because code that is duplicated
in more locations is potentially more relevant to the programmer and can be found more
quickly with pattern mining methods. Since every sample collection run collects a different
selection of 100 potential clones, there is variance in the amount of time it takes to collect
the sample. The variance was measured by collecting 50 independent samples with 100
frequent subgraphs in each sample (see Figure 5.2).

To look at the scalability of the new implementation on larger programs, OrientDB
was examined with the addition of all of its library dependencies – including generated
code. Thus, the OrientDB PDG includes code from both the application and all of the
non-application libraries. Since the libraries were delivered as JVM bytecode no line count
could be determined. OrientDB generated around four times the number of vertices as the
next largest program – so the total line count of OrientDB and its dependencies may be as
large as 2 MLOC.
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Figure 5.3: The mean number of clusters for samples of 2-frequent subgraphs (solid lines; variances are
shown as shaded regions), for various choices of ε. Items α and β cluster together if δ(α, β) < ε where δ is a
distance metric between the items. The number next to each dataset name is the average number of unique
items sampled when sampling (with replacement) 100 items total. The dashed lines show the intra/inter
cluster distance ratio – the closer it is to 0 the better the clustering. The solid black line shows this ratio
for random clustering (the shaded area indicates the variance). If a dashed line is below the black line it is
better than random.

The PDGs used in the study were generated by our tool jpdg [59]. The evaluation
was conducted on a dual-socket server with 2010 Intel Xeon X5650 CPUs and 96 GB of
memory. Despite the large amount of memory on the server used to collect the timing data,
all computations ran well on a laptop with 16 GB of memory. All used under 4 GB of RAM
except for those involving the OrientDB dataset, which required around 10 GB of RAM.
The memory usage was dominated by storage for the graph index and varied only slightly
during the actual sampling procedure.

It took under 2 minutes to collect a sample of 100 five-frequent subgraphs for all of
the programs except OrientDB (Figure 5.2). For the smaller programs, collecting a sample
required less than 10 seconds – making our new implementation suitable for desktop usage.
For the smallest program, ExprCalc, we were able to find all of the frequent subgraphs (∼2.5
million at minimum support 2). The rest of the programs had too many frequent subgraphs
(>100 million) for us to mine them all at minimum support 2 or 5. At support level 5 it
yields only frequent subgraphs containing at most 4 edges. Larger 5-frequent subgraphs
were found for rest of the subject programs, ranging in size from 35 edges for Zookeeper to
96 edges for Tomcat to 494 edges for OrientDB (see the top axis in Figure 5.2).
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Programmers are potentially interested in regions of code duplicated in just one other
location. As shown in Figure 5.2, the execution time required to collect a sample of 100 2-
frequent subgraphs was greater than the time for 5-frequent subgraphs. The longest amount
of time spent collecting a sample for any program except OrientDB was 67 minutes, while
the highest mean time was 8 3

4 minutes. OrientDB took much longer — as long as 10 hours.
Recall that OrientDB is four times larger than the next largest program, hBase, which has
500 KLOC. Clearly, there is work left to be done on the scalability of PDG-based clone
detection. In the future, when detecting clones for code review only the ones related to
changed code need to be found. Performance may also be improved by using a better
indexed subgraph matching algorithm [159] and incrementally updating the PDGs [62,120].

Another issue with code clones in general, but especially with clones found from graphi-
cal representations such as PDGs, is reporting multiple clones that are very similar to each
other. These “clone families” arise naturally since many frequent subgraphs share common
subgraphs with other frequent subgraphs. When reviewing code clones, programmers do not
want to see very similar clones over and over again. Future PDG-based clone detection sys-
tems should address this problem. Towards that end, Figure 5.3 evaluates a simple density
based clustering algorithm, DBSCAN [43] (with no minimum number of items allowed in a
cluster). In density based clustering, items α and β cluster together if the distance between
them, according a metric δ, is less than ε: δ(α, β) < ε. In Figure 5.3 the δ metric is the
Jaccard set similarity coefficient applied to the sets of vertex labels of two subgraphs. Thus,
subgraphs that contain the same combination of operators, method calls, and constants are
placed together.

DBSCAN identified sizable “tight” clusters (as measured by the intra/inter cluster dis-
tance ratio) of clones for 4 of the subject programs (ExprCal, Zookeepr, BCEL, and DDH in
Figure 5.3). These clusters indicate the presence of clone families, which we confirmed with
visual inspection. Identifying these clusters reduces the programmer effort needed to review
the set of potential clones, since only a representative from the cluster needs to be reviewed
by the programmer. For the other 4 programs (jGit, Tomcat, hBase, and OrientDB) most of
the sampled frequent subgraphs were distinct from each other, and cluster quality was poor
when they were grouped together (as can be seen in the figure, for the higher settings for
ε). Future work could integrate an online clustering technique into the sampling procedure
to ensure adequate diversity in the output. In addition, there are many other similarity
measures for graphs [122] and some of them such as graph kernels can take into account
the structure of graphs. Such measures may perform better for this application and their
utility for PDG-based clone-detection should be evaluated.

5.5 Conclusion

We have presented a new algorithm for sampling potential code clones from program depen-
dence graphs, using unweighted random walks over the frequent connected subgraph lattice.
The algorithm uses the greedy independent subgraphs measure to prune the subgraph-
matching search space, which reduces the computation costs for difficult-to-mine program
graphs. Empirical results were presented that demonstrated that the algorithm is capable
of mining large programs. For programs with at least 500,000 LOC it can sample clones
fast enough to be used either on the desktop or in a continuous integration system for use
during code review. The algorithm presented does not use any heuristics or limit the size of
frequent subgraph found. Results were also presented for the effectiveness of using density
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based clustering on the returned clones. For half of the programs significant clusters were
found. The time has come to reconsider PDG-based clone detection as part of a holistic
strategy of clone management and to develop clone management systems that integrate
multiple detection strategies.

53



Chapter 6

Behavioral Fault Localization by
Sampling Suspicious Dynamic
Control Flow Subgraphs

6.1 Introduction

Automated fault localization techniques have been developed to help programmers locate
software faults (bugs) responsible for observed software failures. Many of these techniques
are statistical in nature (e.g., [75, 92, 94]). They employ statistical measures of the asso-
ciation, if any, between the occurrence of failures and the execution of particular program
elements like statements or conditional branches. The program elements that are most
strongly associated with failures are identified as “suspicious”, so that developers can ex-
amine them to see if they are faulty. The association measures that are used are often
called suspiciousness metrics [74]. Such statistical fault localization (SFL) techniques typi-
cally require execution profiles (or spectra) and PASS/FAIL labels for a set of both passing
and failing program runs. Each profile entry characterizes the execution of a particular
program element during a run. For example, a statement-coverage profile for a run indi-
cates which statements were executed at least once. The profiles are collected with program
instrumentation, while the labels are typically supplied by software testers or end users.

Kochar et al. [82] recently surveyed 386 software engineering practitioners about their
expectations for automated fault localization. They found both strong demand for fault
localization solutions and high barriers to adoption. Foremost among the barriers was
a requirement for high localization accuracy. More than 80% of respondents considered
a fault localization session successful only if a fault is found among the top five suggested
locations. Seventy-five percent of respondents felt that fault localization should be successful
at least 75% of the time. Scalability was also important to respondents. Seventy-five percent
of respondents felt that a fault localization technique should scale to programs of at least
100,000 SLOC. Finally, over 85% of respondents felt it was important for a fault localization
technique to help programmers to comprehend its results.

To address these requirements for automated fault localization, we present a new algo-
rithm, called Score-Weighted Random Walks (SWRW), for “behavioral” fault-localization.
Behavioral fault localization techniques (e.g. [24]) extend basic SFL techniques so as to
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Figure 6.1: Process for localizing faults with discriminative graph mining.

localize faults within a behavior, which is a context formed of interacting program ele-
ments such as basic blocks or functions. Behavioral fault localization combines evidence
from simple program elements and potentially makes it easier for programmers to compre-
hend localization results. Our new algorithm SWRW belongs to a family of discrimina-
tive graph-mining algorithms that have previously been used for behavioral fault localiza-
tion [24, 34–37, 94, 100, 103, 111, 156]. Figure 6.6 illustrates the process of fault localization
with discriminative graph mining.

Discriminative graph mining algorithms are very powerful in principle but they must
make tradeoffs to address the challenging combinatorics of the graph mining problem. Our
new algorithm SWRW does this by randomly sampling “suspicious” subgraphs from basic-
block level dynamic control flow graphs collected during the execution of passing and failing
tests. During the sampling process, the most suspicious subgraphs are favored for selection.
SWRW provides more accurate fault localization than similar algorithms, as we demonstrate
in an empirical study. Unlike those algorithms, SWRW can be used with a variety of
suspiciousness metrics.
Summary of Contributions

1. A new behavioral fault localization algorithm, SWRW, that samples suspicious sub-
graphs from dynamic control flow graphs collected from passing and failing executions.
Unlike similar algorithms, SWRW can be used with a variety of suspiciousness metrics.

2. New generalizations of existing suspiciousness metrics that allow them to be applied
to behaviors represented by subgraphs of dynamic control flow graphs.

3. Dynagrok, a new instrumentation, mutation, and analysis tool for the Go programming
language.

4. An empirical study whose results suggest that SWRW is more accurate than similar
algorithms.

6.2 Dynagrok: A New Profiling Tool
All coverage based statistical fault localization (CBSFL) techniques use coverage profiles
to gather information on how software behaved when executed on a set of test inputs. A
coverage profile typically contains an entry for each program element of a given kind (e.g.,
statement, basic block, branch, or function), which records whether (and possibly how many
times) the element was executed during the corresponding program run. The profiles and
PASS/FAIL labels for all tests are then used to compute a statistical suspiciousness score
for each program element.

The process of gathering the coverage information from running programs is called pro-
filing and there are many different varieties of profilers and profiling techniques available.
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package main

func main() {
for i := 10; i >= -2; i-- {

println(fib(i))
}

}

func fib(x int) int {
if x < 0 {

return 0
}
p, c := 0, 1
for i := 0; i < x; i++ {

n := p + c
p, c = c, n

}
return c

}

func main() func fib(x int) int

entry
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13

exit

1

13

x < 0

13 

i++

return 0

2
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package main

import "dgruntime"

func main() {
defer func() { dgruntime.Shutdown() }()
dgruntime.EnterFunc("main")
defer func() { dgruntime.ExitFunc("main") }()
for i := 10; dgruntime.EnterBlkFromCond(2) && i >= -2; i-- {

dgruntime.EnterBlk(4)
println(fib(i))

}
}

func fib(x int) int {
dgruntime.EnterFunc("fib")
defer func() { dgruntime.ExitFunc("fib") }()
if x < 0 {

dgruntime.EnterBlk(2)
return 0

}
dgruntime.EnterBlk(3)
p, c := 0, 1
for i := 0; dgruntime.EnterBlkFromCond(4) && i < x; i++ {

dgruntime.EnterBlk(6)
n := p + c
p, c = c, n

}
dgruntime.EnterBlk(5)
return c

}

Figure 6.2: An example dynamic control flow graph (DCFG) for a Go program (listing on top right) that
computes elements from the Fibonacci sequence. Each vertex is a basic block with a basic block identifer
(e.g. b1) that, in conjunction with the name of the containing function, serves as the label for the block (e.g.
main:b1). Each edge shows the number of traversals taken during the execution of the program. Note that
the loop update blocks (main:b3 and fib:b7) will be not in the profiles because Dynagrok instruments the Go
source code and profiling instructions cannot be syntactically inserted in those locations. The instrumented
program is shown in the bottom listing.
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Coverage profiling is a simple and widely implemented technique, which is why it has been
widely used by the fault localization community. Another technique is tracing, which logs
the sequence of program locations as they are executed. The traces provide detailed infor-
mation on the behavior of the program but could grow to be very large for long running
programs. This paper uses execution flow profiling which computes the dynamic interpro-
cedural control flow graph of a program’s execution. This provides some of the benefits of
tracing without recording an excessive amount of data.

To capture execution flow profiles we developed Dynagrok, a new analysis, instrumen-
tation and mutation platform for the Go programming language. Go is a newer language
(2009) from Google that has been seeing increasing adoption in industry. It has been
adopted for web programming, systems programming, “DevOps,” network programing, and
databases.1 Dynagrok builds upon the abstract syntax tree (AST) representation provided
by the Go standard library.

Dynagrok collects profiles by inserting instrumentation into the AST of the subject
program. The profiles currently collected are dynamic control flow graphs (DCFGs) whose
vertices represent basic blocks. A basic block is a sequence of program operations that can
only be entered at the start of the sequence and can only be exited after the last operation
in the sequence [6]. A basic-block level control flow graph (CFG) is a directed labeled graph
g = (V,E, l) comprised of a finite set of vertices V , a set of edges E ⊆ V ×V , and a labeling
function l mapping vertices and edges to labels. Each vertex v ∈ V represents a basic block
of the program. Each edge (u, v) ∈ E represents a transition in program execution from
block u to block v. The labeling function l labels the basic blocks with a unique identifier
(e.g. function-name:block-id), which is consistently applied across multiple executions but is
never repeated in the same execution.

Figure 6.2 shows an example DCFG collected by Dynagrok for a simple program that
computes terms of the Fibonacci sequence. To collect such graphs Dynagrok parses the
program into an AST using Go’s standard library. Dynagrok then uses a custom control
flow analysis to build static control flow graphs. Each basic block holds pointers to the
statements inside of the AST. The blocks also have a pointer to the enclosing lexical block
in the AST. Using this information, Dynagrok inserts profiling instructions into the AST at
the beginning of each basic block. The instructions inserted by Dynagrok use its dgruntime
library to track the control flow of each thread (which is called a goroutine in Go). When
the program shuts down (either normally or abnormally) the dgruntime library merges the
flow graphs from all the threads together and writes out the result.

6.3 From Suspicious Locations to Suspicious Behaviors

Before explaining our notion of a suspicious behavior we will review the concept of suspicious
statements, blocks, or other locations in a program. There is a large body of work on
coverage based statistical (also called spectrum-based) fault localization (CBSFL) (e.g.,
[1, 12, 13, 26, 75, 76, 88, 99, 133, 138, 155]), which identifies suspicious program locations from
code coverage profiles collected from passing and failing program runs. All of this work tries
to assess the suspiciousness of a particular program element based on a statistical measure
of the association between coverage of the element and the occurrence of program failure.

A simple measure of the suspiciousness of a program location l is the probability Pr [F |l]
that the program will fail given execution of the location l [138]. Let n be the total number

1tiobe.com/tiobe-index/, blog.golang.org/survey2016-results
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of executions, f be the number of executions that failed, p be the number of executions that
did not fail, nl be the total number of times l was executed, fl be the total number of times
l was executed and the program failed, and pl be the total number of times l was executed
and the program did not fail. Then we can define an estimator for Pr [F |l] in terms of these
counts by:

Pr [F |l] =
Pr [F ∩ l]

Pr [l]
≈

fl
n
nl

n

=
fl
nl

(6.1)

Many more measures have been developed to assess the suspiciousness of program lo-
cations but many can be expressed using combinations of simple estimators of just four
probabilities: the probability of the program failing Pr [F ] ≈ f

n , the probability of the pro-
gram not failing (test passing) Pr [P ] ≈ p

n , the probability of the execution of a location l

when the program fails Pr [F ∩ l] ≈ fl
n , and the probability of the execution of a location

l when the program does not fail Pr [P ∩ l] ≈ pl
n . For example, using these estimators the

popular Ochiai metric [1] can be expressed [12] as:

Och ≈
√

Pr [F |l]× Pr [l|F ]

=

√
Pr [F ∩ l]

Pr [F ∩ l] + Pr [P ∩ l]
× Pr [F ∩ l]

Pr [F ]

Each simple program statement or instruction is contained within a basic block (see
Figure 6.2). Since the execution of one operation of a basic block implies the execution of
the whole block (under most circumstances) all operations in a block are equally suspicious
under any coverage-based statistical suspiciousness measure. Thus, it suffices to compute
the suspiciousness for a block as a whole rather than doing so separately for each statement
or instruction in the block.

One method of measuring program behavior is through flow graph profiling (e.g., as
performed by Dynagrok). In this paper a “suspicious behavior” is a subgraph h of a dynamic
control flow graph (DCFG) g such that execution of h is statistically associated with program
failure. The framework outlined above will be extended from particular basic blocks to
subgraphs of flow graphs. This allows nearly any CBSFL suspiciousness measure to be
re-used as a suspiciousness measure for flow graph fragments.

As before, the probability of program failure is Pr [F ] ≈ f
n and the probability of a

program not failing is Pr [P ] ≈ p
n . However, our other two “building block” estimators will

need to be modified for use with subgraphs. Let F be the set of DCFGs collected from
failing executions and let P be the set from non-failing (passing) executions. Let g be a
dynamic control flow graph, and let h be a subgraph of g, denoted h v g. We say that the
subgraph h is “covered” by any program execution with DCFG g.

In the previous section the Ochiai metric was defined in Equation 6.2 in terms of the
probabilities Pr [F ∩ l] (the probability that the program fails and the location l is executed)
and Pr [P ∩ l] (the probability that the program does not fail and the location l is executed).
Ochiai can be adapted for use with subgraphs by replacing these probabilities with anal-
ogous ones: Pr [F ∩ h] (the probability that the program fails and subgraph h is covered)
and Pr [P ∩ h] (the probability that the program does not fail and subgraph h is covered).
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Estimators for these probabilities can be defined as:

Pr [F ∩ h] ≈ |{g : g ∈ F ∧ h v g}|
n

(6.2)

Pr [P ∩ h] ≈ |{g : g ∈ P ∧ h v g}|
n

(6.3)

Ochiai can then be redefined for suspicious subgraphs (behaviors) as:

OchF,P(h) ≈

√
Pr [F ∩ h]

Pr [F ∩ h] + Pr [P ∩ h]
× Pr [F ∩ h]

Pr [F ]
(6.4)

The other suspiciousness measures discussed by Sun and Podgurski [138] can be adapted in
a similar fashion.

Many suspicious behaviors never appear in full among the dynamic flow graphs of the
non-failing (passing) executions. However, portions of these behaviors do appear. The
estimator above for Pr [P ∩ h] will always estimate the probability of such subgraphs as 0.
This seems to be an underestimate for subgraphs for which a majority of their vertices and
edges are covered by non-failing executions. An alternative (and efficiently computable)

estimator P̃r[P ∩ h] averages the probability estimates for each edge and vertex:

P̂r[P ∩ ε] =
|{g : g ∈ P ∧ ε ∈ Eg}|

n

P̂r[P ∩ v] =
|{g : g ∈ P ∧ v ∈ Vg}|

n

P̃r[P ∩ h] =

∑
ε∈Eh

P̂r[P ∩ ε] +
∑
v∈Vh

P̂r[P ∩ v]

|Eh|+ |Vh|
(6.5)

This new estimator gives “partial credit” to a graph h which has substructures which are
covered by passing executions.

Table 6.1 summarizes the definitions of the probability estimators used throughout the
rest of this chapter. Table 6.2 provides the formulas for a representative set of suspiciousness
metrics adapted for use with DCFG subgraphs. Note, if a subgraph h contains a single vertex
v and no edges, the estimators are equivalent to the estimators described in the previous
section.

6.4 Mining Suspicious Behaviors

This section reviews previous work on discriminative graph mining [86,127,140,150] and how
it can be applied to statistical fault localization [24,111]. The next section will introduce our
new algorithm Score-Weighted Random Walks using the background reviewed in this section.
The basics of extracting the most suspicious subgraphs will be introduced here by reviewing
three related discriminative subgraph mining algorithms: Branch-And-Bound [86,127,140],
sLeap [150], and LEAP Search [150]. As introduced in Section 6.3, the subgraphs will be
extracted by analyzing two sets of graphs. The first set F contains the dynamic control
flow graphs collected from executions that failed. In our empirical study the DCFGs were
collected with our new Dynagrok platform (see Section 6.2). The second set P contains the
DCFGs from passing (or non-failing) executions of the program. The three aforementioned
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Table 6.1: Probability estimators adapted to subgraphs of basic block flow graphs.

Probability Estimator Formula

P̂r[F ] f

n

P̂r[P ]
p

n

P̂r[F ∩ h] |{g : g ∈ F ∧ h v g}|
n

P̃r[P ∩ h]
∑
ε∈Eh

P̂r[P ∩ ε] +
∑
v∈Vh

P̂r[P ∩ v]

|Eh|+ |Vh|

P̂r[h] P̂r[F ∩ h] + P̃r[P ∩ h]

algorithms will be described with reference to the problem of finding the most suspicious
subgraphs of the graphs in F , in contrast to the subgraphs of the graphs in P, although the
algorithms are applicable to discriminative subgraph mining problems in general.

Finding suspicious subgraphs from F , the set of dynamic control flow graphs of failed
program executions, is an application of discriminative (or significant) subgraph mining
[150]. Significant subgraph mining is a variation of frequent subgraph mining (FSM) [71,151].
FSM finds all subgraphs of a graph (or graphs) that recur k or more times for a chosen k.
In significant subgraph mining, instead of finding all subgraphs that are frequent, the goal
is to find the most significant subgraph(s) [25] according to some measure of significance. If
there are multiple classes of graphs in the database (e.g. “positive” and “negative” graphs),
significance measures such as Information Gain [24, 150] are used to guide the algorithm
to find subgraphs that discriminate between the positive and negative graphs. In fault
localization, the positive graphs are the DCFGs collected from failing executions and the
negative graphs are the DCFGs collected from passing executions.

Previous studies in Fault Localization [24,111] used algorithms in the Branch-And-Bound
family [86] (such as LEAP Search [150]) to mine the top-k suspicious subgraphs.

Definition 6.1 (Top-k Suspicious Subgraph Mining). Given F , the set of dynamic control
flow graphs collected from failing program executions, P, the set of DCFGs from passing
executions, and a suspiciousness measure ς, find a set of subgraphs H such that |H| = k
and

∑
h∈H ς(h) is maximized.

In principle the suspiciousness measure ς in the definition above could use arbitrary infor-
mation from a subgraph h and the sets F and P. However, in symmetry to the discussion
in Section 6.3 and with previous work [150] we will only consider measures defined in terms
of the probability estimators in Table 6.1.

Listing 6.1 shows a modified version of the Branch-And-Bound algorithm [86, 127, 140,
150]. It was modified to find the Top-k discriminative subgraphs (instead of the single most
discriminative subgraph). Branch-And-Bound enumerates the subgraphs of F in a depth-
first manner. At each step of the algorithm Branch-And-Bound considers a subgraph h of a
graph g ∈ F . If h’s score ς(h) is greater than that of the best graph h̄ found so far, then h
becomes the new h̄. Branch-And-Bound then checks to see if any supergraph h′ w h (where
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Table 6.2: A representative set of suspiciousness metrics for statistical fault localization [99]
defined in terms of probability estimators [138].

Suspiciousness Metric Formula

Precision
Pr [F ∩ h]

Pr [h]

F1 2
Pr [h]

Pr [F ] + Pr [h]

Pr [F ∩ h]

Pr [h]

Ochiai

√
Pr [F ∩ h]

Pr [F ]

Pr [F ∩ h]

Pr [h]

Jaccard
Pr [F ∩ h]

Pr [F ] + Pr [P ∩ h]

Information Gain

[
Pr [F ∩ h]

Pr [h]
log2

(
Pr [F ∩ h]

Pr [h]

)
+

Pr [P ∩ h]

Pr [h]
log2

(
Pr [P ∩ h]

Pr [h]

)]
− [Pr [F ] log2(Pr [F ]) + Pr [P ] log2(Pr [P ])]

Associational Risk
Pr [F ∩ h]− Pr [F ] Pr [h]

ε+ Pr [h]− (Pr [h])2

Contrast Pr [F ∩ h]− Pr [P ∩ h]

Relative-Precision
Pr [F ∩ h]

Pr [h]
− Pr [F ]

Relative-F1 2
Pr [h]

Pr [F ] + Pr [h]

(
Pr [F ∩ h]

Pr [h]
− Pr [F ]

)
Relative-Ochiai

√
Pr [h]

Pr [F ]

(
Pr [F ∩ h]

Pr [h]
− Pr [F ]

)
Relative-Jaccard

Pr [F ∩ h]

Pr [F ] + Pr [P ∩ h]
− Pr [F ]
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h′ v g for a graph g ∈ F) could have a score at least as large as ς(h̄), by computing an
upper bound ς̂ on ς. If none of the supergraphs of h have a score at least as large as the
current maximum h̄ then all of the supergraphs of h are pruned. Finally, all graphs which
can be constructed from h by adding one edge are added to the queue of graphs to consider.

sLeap [150] improves on Branch-And-Bound by integrating a heuristic pruning condition
into the Branch-And-Bound algorithm. The amount of heuristic pruning is controlled by a
parameter γ (called σ in the original paper). The condition prunes the current subgraph h
if it has a supergraph h′ that has already been processed and the difference in support for
h and h′ is with-in γ.

2 ∗ (Pr [F ∩ h]− Pr [F ∩ h′])
Pr [F ∩ h] + Pr [F ∩ h′]

< γ (6.6)

2 ∗ (Pr [P ∩ h]− Pr [P ∩ h′])
Pr [P ∩ h] + Pr [P ∩ h′]

< γ (6.7)

In Yan’s paper the heuristic was expressed in set notation. However, it is easier to understand
the condition when expressed in terms of probabilities. The pruning condition is heuristic,
meaning sLeap only approximates the behavior of Branch-And-Bound. The sLeap algorithm
is shown in Listing 6.2.

LEAP Search uses sLeap as a subroutine of Frequency Descending Mining. As this
name suggests, it works by running the sLeap algorithm repeatedly, each time with a lower
setting for the minimum frequency (the min F sup parameter in Listing 6.1). At each step,
the minimum frequency is halved until either it reaches 1 or the output of sLeap does not
change between runs. Note that each iteration of LEAP feeds the output of sLeap back into
itself to seed the set of maximally scored subgraphs. This pre-seeding of sLeap allows later
iterations to prune the search space much faster. An (optional) last step of LEAP then runs
sLeap one last time with the heuristic pruning parameter γ < 0 so that no heuristic pruning
is performed.

The key to the algorithms in the Branch-And-Bound family is the determination of an
upper bound on the suspiciousness (or significance) score for all potential supergraphs of a
graph h. One bound (considered by Yan et al. [150]) could be determined by considering
two cases:

1. The case when the set F does not contain any of the super graphs of h but the set P
does contain them. This case can be expressed as: ςc(0, y) where y = P̂r[P ∩ h].

2. The case when the set P does not contain any of the super graphs of h but the set F
does contain them. This case can be expressed as: ςc(x, 0) where x = P̃r[F ∩ h].

Using these two cases an upper bound for ς is

ς̂c(x, y) = max {ςc(x, 0), ςc(0, y)} (6.8)

Since the measure ς may not be well defined at 0 typically a small (but non-zero) probability
will be used in place of 0.

ς̂c(x, y) = max {ςc(x, ε), ςc(ε, y)} (6.9)

However, the definition Equation 6.9 is too conservative on its estimate of the minimum
probability of h appearing on the passing or failing side. An upper bound (which improves
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1 # param F: The DCFGs collected from failing executions
2 # param P: The DCFGs collected from passing executions
3 # param score: The significance (suspiciousness) score
4 # param k: The number of graphs to mine
5 # param min_F_sup: The minimum number of graphs in the set
6 # F that a suspicious graph must appear in
7 # returns the k most suspicious maximal subgraphs in F
8 def branch_and_bound(F, P, score, k, min_F_sup=1):
9 queue = max_priority_queue()

10 # Initialize the queue with subgraphs containing
11 # single vertices (one for each unique vertex label).
12 for vertex in F.unique_vertices():
13 queue.push(score(vertex), vertex)
14 # best tracks the top-k most significant subgraphs
15 best = min_priority_queue()
16 # visited tracks which subgraphs has been processed
17 visited = set()
18 while queue:
19 # Get the highest scoring element in the work list
20 h = queue.pop_max()
21 # Check to see if it has already been processed
22 if h in visited:
23 continue
24 visited.add(h)
25 # See if it is one of the best subgraphs found
26 check_best(score, best, h)
27 # Add supergraphs of h to the queue
28 for supergraph in extend_with_one_edge(F, P, h):
29 # Check the minimum support
30 if F.count_support(supergraph) < min_F_sup:
31 continue
32 # Check upper bound pruning criteria
33 if best.size() < k or \
34 (upper_bound(score, supergraph) >= score(best.peek_min())):
35 queue.push(score(h), h)
36 return best
37
38 # Checks to see if the subgraph h should be added to the
39 # queue of the highest scoring subgraphs
40 # param score: The significance (suspicousness) measure
41 # param best: a min priority queue of subgraphs
42 # param h: a subgraph
43 def check_best(score, best, h):
44 if best.size() < k:
45 best.push(score(h), h)
46 elif score(h) > score(queue.peek_min()):
47 best.pop_min(); best.push(score(h), h)
48 elif score(h) == score(queue.peek_min()) and \
49 random.random() > .5:
50 # flip a coin to decide which graph to keep
51 best.pop_min(); best.push(score(h), h)

Listing 6.1: Python psuedocode for the Branch-And-Bound algorithm modified to search for the top-k most
suspicious maximal subgraphs. The function extend with one edge takes the subgraph h and produces every
one-edge supergraph of h that exists in F and P. Finally, the function upper bound computes the upper
bound on the function score for all supergraphs of h.
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1 # param F: The flow graphs collected from failing executions
2 # param P: The flow graphs collected from passing executions
3 # param score: The suspicousness measure
4 # param k: The number of graphs to mine
5 # param gamma: sLeap’s the heuristic pruning parameter γ
6 # param min_F_sup: The minimum number of graphs in the set F that a suspicious
7 # graph must appear in
8 # param best: a starting set of known suspicious subgraphs
9 # returns the most suspicious maximal subgraphs in F

10 def sLeap(F, P, score, k, gamma, min_F_sup=1, best=None):
11 queue = max_priority_queue()
12 for vertex in F.unique_vertices():
13 queue.push(score(vertex), vertex)
14 if best is None:
15 best = min_priority_queue()
16 visited = set()
17 while queue:
18 ## get the highest scoring element in the work list
19 h = queue.pop_max()
20 ## check to see if it has already been processed
21 if h.canonical_label() in visited:
22 continue
23 ## add it to the set of visited items
24 visited.add(h.canonical_label())
25 supergraphs = extend_with_one_edge(F, P, h)
26 skip = False
27 for sg in supergraphs:
28 if sg.canonical_label() not in seen:
29 continue
30 Df = (2 * (Pr(F, cur) - Pr(F, sg))) / (Pr(F, cur) + Pr(F, sg))
31 Dp = (2 * (Pr(P, cur) - Pr(P, sg))) / (Pr(P, cur) + Pr(P, sg))
32 if Df < gamma and Dp < gamma:
33 skip = True
34 break
35 if skip:
36 continue
37 # See if it is one of the best subgraphs found
38 check_best(score, best, h)
39 for supergraph in supergraphs:
40 ## check the to see if it falls below the minimum support
41 if F.count_support(extension) < min_F_sup:
42 continue
43 ## check to see if it fails the upper bound pruning criteria
44 if best.size() < k or
45 upper_bound(score, supergraph) >= score(best.peek_min()):
46 queue.push(score(h), h)
47 return best

Listing 6.2: Python psuedo code for the sLeap algorithm modified to search for the top-k most suspicious
maximal subgraphs. The check best function is defined in Listing 6.1. This algorithm is nearly the same
as the Branch-And-Bound algorithm the only difference is the addition of a new heuristic pruning strategy
(lines 25−33). The heuristic is not sound and may prune one or more of the top-k subgraphs but in practice
usually does not.
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upon the upper bound in [150]) for ς can be constructed using the following two facts. First,
a user may ensure a subgraph h appears among the graphs in F at least fmin times. 1

fmin

is a lower bound on Pr [F ∩ h]. Second, the user may specify a maximum number of edges

|E|max allowed in a subgraph. |E|max can be used to derive a lower bound on P̃r[P ∩ h]:

P̃r[P ∩ h]min =

∑
ε∈EH

P̂r[P ∩ ε] +
∑
v∈VH

P̂r[P ∩ v]

2|E|max + 1
(6.10)

Combining the two lower bounds yields an upper bound ς̂ on ς for the supergraphs of h:

ς̂ = max

{
ς(Pr [F ∩ h] , P̃r[P ∩ h]min),

ς( 1
fmin

, P̃r[P ∩ h])

}
(6.11)

Branch-And-Bound algorithms depend on the suspiciousness (or significance) metrics
satisfying a technical property (Equation 5 in the LEAP Search paper [150]) which we will
call the Discriminative Velocity Property (DVP). Table 6.3 shows that, of the metrics in
Table 6.2, only Information Gain satisfies this technical detail. Because satisifaction of DVP
is a requirement for using Branch-And-Bound algorithms, of the metrics shown in Table 6.2,
only Information Gain can be used. This is a major limitation of algorithms in this family.

Definition 6.2 (Discriminative Velocity Property (DVP)). Let ς be a suspiciousness score,
x = Pr [F ∩ h], and y = Pr [P ∩ h]. DVP is satisfied if:

(x ∈ (0, 1] ∩ y ∈ [0, 1] ∩ x > y) =⇒
(
∂ς

∂x
> 0 ∩ ∂ς

∂y
< 0

)
(x ∈ (0, 1] ∩ y ∈ [0, 1] ∩ x < y) =⇒

(
∂ς

∂x
> 0 ∩ ∂ς

∂y
< 0

)
DVP formalizes the intuition behind the upper bounds in Equations 6.8, 6.9, and 6.11 and
ensures they are indeed upper bounds on ς [150]. DVP states that ς must be increasing if
when x > y either x increases or y decreases. In the same way, ς must also be increasing if
when x < y either x decreases or y increases. If ς does not satisfy DVP then equations do
not define upper bounds as ς may not increase (or decrease) in the expected manner. If ς
movements are not smoothly related to changes in the frequency of the subgraphs then the
Branch-And-Bound algorithm will spuriously prune subgraphs which could have had scores
greater than the current maximal score.

6.5 Sampling Suspicious Behaviors

The Branch-And-Bound framework from Section 6.4 has four drawbacks when applied to
automatic fault localization. The first is the requirement that the suspiciousness metrics
satisfy the Discriminative Velocity Property (DVP), restricting these algorithms to metrics
such as Information Gain (see Table 6.3). The second drawback is the requirement (which
stems from Equation 6.11) for the user to specify the maximum number of edges allowed in
a discriminative subgraph. The third drawback is the requirement for the user to specify the
maximum number of subgraphs to mine. The fourth drawback to the Branch-And-Bound
framework is its enumeration of the subgraphs of graphs in F — a scalability bottleneck [25].
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Table 6.3: Discriminative Velocity Property (DVP) (Eq. 5 in [150]) and Inverse Velocity Property
(IVP) (Def. 6.3) satisifaction for each suspciousness metric in Table 6.2.

Suspiciousness Metric Satisfies DVP Satisfies IVP

Precision X
F1 X
Ochiai X
Jaccard X

Information Gain X X
Associational Risk
Contrast X

Relative-Precision X
Relative-F1 X
Relative-Ochiai
Relative-Jaccard X

Note: Satisfaction was checked using Mathematica for most measures but had to be checked by hand for
Relative-Ochiai and Information Gain. Information Gain was previously shown to satisfy DVP [24,150] and
our analysis confirmed this result. None of the other metrics satisfy DVP.

Recall, Branch-And-Bound enumerates all of the potentially suspicious subgraphs of the
set dynamic flow graphs F collected from failing executions. The enumeration is done in
a similar manner to the enumerations conducted in the mining algorithms presented in
Chapter 3. As was found in Chapter 3 as graphs grow larger it becomes more difficult to
quickly find frequent subgraphs and by extension suspicious subgraphs. In the same way, as
the minimum required support for the subgraph decreases the mining difficulty increases.

Table 6.4 shows an example of this phenomena using the sLeap algorithm on a bug in
an AVL Tree (see Table 6.11). Random tests were generated for the tree by generating a
mixture of Put, Get, Has, and Remove operations. The keys used as arguments were generated
randomly. Each time a new operation is generated there is a 50% chance that a previous
key used in a Put operation is re-used. In Table 6.4 as the minimum support decreases the
amount of time sLeap spends mining the top-20 graphs increases.

The LEAP Search algorithm tries to take advantage of this property by using Frequency
Descending Mining. As indicated in Table 6.4, like sLeap, LEAP Search takes a long time to
mine graphs at “Min Support 5.” Although, LEAP Search is generally faster than Branch-
And-Bound it isn’t usually faster than sLeap. The advantage of LEAP Search over sLeap is
LEAP Search returns the same answer as Branch-And-Bound while sLeap only approximates
the output of Branch-And-Bound when γ > 0.

The problem shown in Table 6.4 can be partially ameliorated by setting stricter limits on
the maximum number of edges. The performance of this “solution” is shown in Table 6.5.
Note, the effect of the maximum edges parameter depends on the dataset. For some datasets
generated from different bugs in the AVL tree the sLeap algorithm does not complete in 1
hour when the maximum number of edges is set to 25. While in Table 6.5, sLeap completes
in 6 seconds for that setting.

Another fundamental problem with Branch-And-Bound, sLeap, and LEAP Search is
they all find the top-k most suspicious subgraphs. This may be appropriate for other
applications of discriminative or significant subgraph mining but it is not necessarily the
right formulation for fault localization a statistical fault localization metrics do not always
correctly predict the location of the fault. This can result in the location of the fault not
appearing among the top-k most suspicious locations or behaviors. This may lead one to
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pick a very large value for k and hope that the programmer either discovers the fault or
moves onto another method before reaching the bottom of the list. However, the mining
difficulty also increases as k is increased (see Table 6.6).

In order solve the aforementioned problems with the Branch-And-Bound framework,
we have developed a new algorithm, called Score Weighted Random Walks (SWRW), for
finding suspicious, significant, or discriminative subgraphs. The new method approximates
Branch-And-Bound’s output like sLeap does. The sampling is weighted by the suspiciousness
scores, which (heuristically) minimizes the error in Branch-And-Bound’s output. A sampling
approach makes it easy to trade-off computation time with accuracy by adjusting the sample
size.

The new method, unlike the Branch-And-Bound algorithms, does not require metrics to
satisfy the restrictive Discriminative Velocity Property mentioned in the previous section
(Equation 5 in [150]). Instead, metrics must satisfy a new property we call the Inverse
Velocity Property (IVP). As shown in Table 6.3, all but two of the suspiciousness metrics
shown in Table 6.2 satisfy IVP.

Definition 6.3 (Inverse Velocity Property). Let ς be a suspiciousness score, x = Pr [F ∩ h],
and y = Pr [P ∩ h]. IVP is satisfied if:

(x ∈ (0, 1] ∧ y ∈ [0, 1]) =⇒
(
∂ς

∂x
> 0 ∧ ∂ς

∂y
< 0

)
IVP requires a suspiciousness metric to increase as the support of a subgraph h either
increases in the set F of graphs from failing executions or decreases in the set P of graph
from passing executions. It also requires the metric to decrease when support for h falls in
F or increases in P. This follows the anti-monotonic structure of subgraph mining [25]:

h v h′ =⇒ ς(h) ≤ ς(h′)

Suspiciousness metrics which satisfy IVP induce a (newly defined) suspicious subgraph
lattice on the subgraphs of the graphs in F . Figure 6.3 shows an example suspicious subgraph
lattice for a small undirected graph dataset. SWRW samples suspicious subgraphs from the
lattice via a weighted forward random walk. The suspicious subgraph lattice is a graph
where the nodes represent subgraphs of the dataset. The suspicious subgraph lattice is a
subgraph of the connected subgraph lattice [59].

Definition 6.4 (Connected Subgraph Lattice of G). The subgraph relation · v · induces the
Connected Subgraph Lattice LG representing all the possible ways of constructing a graph
G ∈ G from the empty subgraph by adding one edge at a time. LG is a digraph where each
vertex u represents a unique connected (ignoring edge direction) subgraph of some G ∈ G.
There is an edge from u to v in LG if adding some edge ε to u creates a subgraph u + ε
isomorphic to v, v ∼= u+ ε.

Definition 6.5 (Suspicious Subgraph Lattice). The subgraph relation · v · and a suspi-
ciousness measure ς satisfying IVP induce a Suspicious Subgraph Lattice ς-LG. The lattice
ς-LG is a connected subgraph of the connected subgraph lattice LG rooted at the root of LG.
Let the empty subgraph h∅ be in Vς-LG

as the root node of ς-LG (it is also the root of LG).
If an edge (u, v) ∈ Eς-LG

then v is in Vς-LG
. An edge (u, v) ∈ ELG is an edge in Eς-LG

if
and only if:

u ∈ Vς-LG
∧
[
ς(u) < ς(v) ∨ ς(u) = ς(v) ∧ Pr [F ∩ v]

Pr [v]
= 1

]
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Min Support Mining Time (seconds)

10 1.22

9 1.95

8 2.31

7 3.21

6 3.42

5 > 120

Table 6.4: Mining speed of sLeap as function of minimum support. sLeap was configured to find the top
20 most suspicious subgraphs of the flow graphs from the executions of 2nd buggy version of the AVL tree
used in the empirical evaluation (Section 6.6). There were 10 flow graphs in the set F and two flow graphs
in the set P. The maximum edges parameter was set to 100. The “leap” heuristic parameter γ was set to
1 (maximum leaping). sLeap requires the suspicious metric to satisfy DVP and therefore the Information
Gain metric was used (see Table 6.3).

Min Support Max Edges Mining Time (seconds)

5 5 0.069

5 10 0.22

5 15 2.85

5 20 5.43

5 25 6.13

5 50 7.55

5 100 > 120

Table 6.5: Mining speed of sLeap as function of the maximum number allowed edges for AVL Bug 2. Other
parameters were set as in Table 6.4.

Min Support Max Edges k Mining Time (seconds)

8 25 1 0.024

8 25 2 0.26

8 25 3 1.06

8 25 5 7.04

8 25 10 19.2

8 25 25 27.5

Table 6.6: Mining speed of sLeap as function of k, the number of graphs to mine, for AVL Bug 1.The γ
parameter was set at .1. Other parameters were set as in Table 6.4.
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F P

(a) Dataset of graphs

c(1, 2/3) = 1/3c(1, 2/3) = 1/3 c(1, 0) = 1

c(1, 2/9) = 7/9 c(1, 5/9) = 4/9 c(1, 2/9) = 7/9

c(1, 1/3) = 2/3 c(1, 1/3) = 2/3

c(1, 5/18) = 13/18

1/5 3/5 1/5

7/11 4/11 4/11 7/11

1/2 1/2

1 1

(b) Suspicious subgraph lattice

Figure 6.3: Example suspicious subgraph lattice constructed using the Contrast suspiciousness metric (see
Table 6.2). The colors stand in for labels in this simple example. In each lattice node (the boxes) the
suspiciousness scores are shown (“c” stands for Contrast). On the lattice edges (edges between the boxes)
the forward transition probabilities are shown.
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1 # param F: The flow graphs collected from failing executions
2 # param P: The flow graphs collected from passing executions
3 # param score: The suspicousness measure
4 # param min_F_sup: The minimum number of graphs in the set F
5 # that a suspicious graph must appear in
6 # param start: the graph in the suspicious subgraph lattice
7 # to start the walk from.
8 # returns a subgraph of F randomly sampled from the
9 # suspicious subgraph lattice induced by P and score.

10 def swrw(F, P, score, min_F_sup, start):
11 cur = start
12 prev = cur
13 while cur is not None:
14 # At each step in the walk, a random restart occurs
15 # with probability proportional to the maximum length
16 # of the walk.
17 if random.random() < 1.0/MAX_EDGES:
18 cur = start; prev = cur
19 continue
20 # Compute the direct supergraphs of the current
21 # graph
22 supers = extend_with_one_edge(F, P, cur)
23 # Filter out graphs not in the suspicious subgraph
24 # lattice
25 supers = filter_supergraphs(F, P, min_F_sup, score,
26 cur, supers)
27 # Randomly select a supergraph to be the next graph
28 # in the walk, favoring those with higher
29 # suspiciousness.
30 prev = cur
31 cur = weighted_sample(score, supers)
32 return prev
33
34 # Filters out graphs in supers that are not in the
35 # suspicious subgraph lattice
36 # param h: the current subgraph (which is in the SSL)
37 # param supers: supergraphs of h
38 # returns a subset of supers
39 def filter_supergraphs(F, P, min_F_sup, score, h, supers):
40 allowed = list()
41 for sg in supers:
42 precision = Pr(F, sg)/(Pr(F, sg) + Pr(P, sg))
43 if score(sg) == score(h) and precision == 1:
44 allowed.append(sg)
45 elif score(sg) > score(h):
46 allowed.append(sg)
47 return allowed
48
49 # Using the score to weight the graphs sample one graph
50 # from graphs
51 # param score: the weighting score
52 # param graphs: a list of graphs
53 # returns one graph from graphs or None if graphs was empty
54 def weighted_sample(score, graphs):
55 if len(graphs) <= 0:
56 return None
57 if len(graphs) == 1:
58 return graphs[0]
59 min_weight = min(score(g) for g in graphs)
60 shift = max(0, -min_weight)
61 weights = [ score(g) + shift + 1e-8 ## ensure > 0
62 for g in graphs ]
63 total = sum(weights)
64 i = 0
65 r = total * random.random()
66 while i < len(weights) - 1 and r > weights[i]:
67 r -= weights[i]
68 i += 1
69 return i

Listing 6.3: Python psuedocode for the new SWRW algorithm.
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1 # param F: The flow graphs collected from failing executions
2 # param P: The flow graphs collected from passing executions
3 # param score: The suspicousness measure
4 # param min_F_sup: The minimum number of graphs in the set F
5 # that a suspicious graph must appear in
6 # param k: the number of walks to take
7 # returns a set of at most k subgraphs
8 def k_walks(F, P, score, min_F_sup, k):
9 return {

10 swrw(F, P, score, min_F_sup, F.empty_subgraph())
11 for _ in xrange(k)
12 }
13
14 # param F: The flow graphs collected from failing executions
15 # param P: The flow graphs collected from passing executions
16 # param score: The suspicousness measure
17 # param min_F_sup: The minimum number of graphs in the set F
18 # that a suspicious graph must appear in
19 # param p: the percentage of the top scoring vertices to
20 # start walks from
21 # param w: the number of walks to take from each vertex
22 # returns a set of suspicious subgraphs
23 def walk_top_vertices(F, P, score, min_F_sup, p, w):
24 # Sort the unique vertices in F by their scores.
25 vertices = F.unique_vertices()
26 vertices.sort(key=lambda v: score(v))
27 # Take walks starting from a percentage p of the
28 # vertices, starting with the most suspicious vertices.
29 subgraphs = set()
30 for i, v in enumerate(vertices):
31 if i >= p * len(vertices):
32 break
33 # Take w walks from each vertex
34 for _ in xrange(w):
35 subgraphs.add(swrw(F, P, score, min_F_sup, v))
36 return subgraphs

Listing 6.4: Python psuedocode for collecting multiple subgraphs using SWRW.
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Listings 6.3 and 6.4 show the new algorithm, Score Weighted Random Walk, for finding
suspicious behaviors by sampling maximal suspicious subgraphs from the suspicious sub-
graph lattice ς-LG. The algorithm is built around a core function (swrw in Listing 6.3). The
algorithm takes a random walk on an absorbing Markov chain [54,80] built from the suspi-
cious subgraph lattice ς-LG. A Markov chain is absorbing if an absorbing state is reachable
from every state, where a state is absorbing if it cannot be left once it is entered. The
random walk taken by SWRW is weighted by the suspiciousness scores ς of the subgraphs
in the lattice, which causes it to visit the more suspicious subgraphs more frequently. When
the walk reaches an absorbing state the graph represented by the state is sampled.

The function swrw in Listing 6.3 simulates a Markov process starting at some state in the
chain (start) and transitioning until it is absorbed at an absorbing state. The absorbing
state, which is a maximally sized suspicious subgraph, is then returned as the sample. At
each step in the simulation there are four sub-steps. The first is to check for a random
restart of the walk. The second sub-step computes the supergraphs of the graph cur that
represents the current state of the Markov chain. The next sub-step filters the supergraphs
such that only those in Vς-LG

are kept. Finally, the function weighted sample is used to select
the next state for the Markov process to transition to.

To collect multiple samples from the suspicious subgraph lattice, k random walks could
be taken. This approach is shown in function k walks in Listing 6.4. Each walk starts
from the bottom of the lattice and, using the supplied walk function (e.g. swrw), samples a
suspicious subgraph from the lattice. This approach begs the question of how to choose an
appropriate value for k.

The function walk top vertices in Listing 6.4 provides an answer. Instead of taking k
walks starting from the root node, it takes walks starting from a percentage p of subgraphs
representing single vertices — suspicious locations — in the graphs in F . The function
orders the subgraphs in decreasing order from from most suspicious to least suspicious.
This ensures, by the Inverse Velocity Property, that SWRW starts from vertices of ς-LG
that are likely to lead to the most suspicious subgraphs.

6.5.1 SWRW Versus the Branch-And-Bound Framework

At the beginning of this section several scalability issues with the Branch-And-Bound frame-
work were demonstrated in Tables 6.4 and 6.5. Returning to those examples, Tables 6.7 and
6.8 show SWRW scaling much better than sLeap as the minimum support decreases.

Two tables are presented to show two scenarios for SWRW. In the first scenario in Table
6.7 SWRW is configured to take 10 walks starting from each basic block in the program.
This ensures that SWRW has a chance to find all of the suspicious behaviors and thus better
approximate Branch-And-Bound. In the second table (6.8), SWRW is configured to take
only 2 walks starting from the top 10% most suspicious basic blocks in the program. This
is very fast and results in a good approximation of sLeap’s output (as can be seen in the
error term).

The Tables 6.9 and 6.10 show effect of increasing the maximum number of edges allowed
in a subgraph for the same two scenarios as used in the previous two tables. SWRW scales
much better than sLeap as the number of maximum edges increase. As both tables show,
increase the maximum number of edges has no effect on the runtime of SWRW past 15
edges but has a big impact on sLeap. The impact on sLeap makes since because the pruning
condition in the Branch-And-Bound framework depends on the upper bound (ς̂) defined in
Equation 6.11. The upper bound depends on the number of maximum edges allowed in a
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Min Support sLeap Time (sec) SWRW Time (sec) Error

10 1.22 1.62 0.009

9 1.95 1.63 0.004

8 2.31 1.81 0.008

7 3.21 1.92 0.010

6 3.42 2.22 0.012

5 – 4.28 –

4 – 8.37 –

3 – 10.74 –

2 – 13.03 –

1 – 30.46 –

Table 6.7: Mining speed of SWRW vs. sLeap as function of minimum support for AVL bug 2. For details see
on sLeap’s configuration and the AVL bug see Table 6.4. SWRW was configured to use the “Top Vertices”
walk method from Listing 6.4. The parameter p was set to 1 and w was set to 10. The column Error is
the standard error from the scores of top-k graphs of sLeap compared with the top-k graphs from SWRW.
An entry 0 indicates perfect approximation. The entries for sLeap and Error of “–” indicate sLeap did not
finish in the time budget of 2 minutes.

Min Support sLeap Time (sec) SWRW Time (sec) Error

10 1.22 0.038 0.071

9 1.95 0.038 0.046

8 2.31 0.058 0.040

7 3.21 0.059 0.039

6 3.42 0.096 0.036

5 – 0.370 –

4 – 1.26 –

3 – 1.68 –

2 – 2.19 –

1 – 4.72 –

Table 6.8: Mining speed of SWRW vs. sLeap as function of minimum support for AVL bug 2. SWRW was
configured with p = .1 and w = 2 to demonstrate it scalability. Everything else is as it was in Table 6.7.

subgraph so as the maximum number of edges allowed increases the upper bound becomes
less and less tight.

SWRW scales better than sLeap as both the maximum number of edges allowed increase
and the minimum support decreases. This solves the major scalability problems inherent
to the Branch-And-Bound framework. Not shown was SWRW scalability as the number of
subgraphs requested increase as SWRW reports far more subgraphs than required of sLeap
or Branch-And-Bound in all of the above experiments. In general the scalability of SWRW
with respect to k (the number of graphs requested) is linear.

As discussed above SWRW can actually approximate the output of Branch-And-Bound
better and faster than sLeap can. In the future, a faster version of the exact algorithm
LEAP (which uses sLeap internally) could be bootstrapped from SWRW. Instead of using
the frequency descending mining strategy, SWRW could simply be run once and the top-k
subgraphs it finds would then be used to bootstrap Branch-And-Bound. SWRW could also
be used inside of Branch-And-Bound to provide a more accurate prediction of the maximum
score of lattice branch by sampling maximal graphs from that branch.
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Max Edges sLeap Time (sec) SWRW Time (sec) Error

5 0.069 1.79 0

10 0.22 3.62 0

15 2.85 4.70 0.026

20 5.43 4.67 0.016

25 6.13 4.87 0.004

50 7.55 4.34 0.007

100 – 4.40 –

Table 6.9: Mining speed of SWRW vs. sLeap as function of the maximum number allowed edges for AVL
Bug 2. Minimum support was set to 5 for this table. For details on sLeap’s configuration see Table 6.5.
SWRW was configured as in Table 6.7.

Max Edges sLeap Time (sec) SWRW Time (sec) Error

5 0.069 0.16 0

10 0.22 0.35 0

15 2.85 0.50 0.068

20 5.43 0.45 0.060

25 6.13 0.42 0.047

50 7.55 0.49 0.052

100 – 0.44 –

Table 6.10: Mining speed of SWRW vs. sLeap as function of the maximum number allowed edges for AVL
Bug 2. SWRW was configured with p = .1 and w = 2 to demonstrate it scalability. Everything else is as it
was in Table 6.9.

6.6 Empirical Evaluation of SWRW

We empirically evaluated SWRW’s fault localization performance in terms of accuracy and
cost. SWRW was compared to a previously proposed behavioral fault localization approach
[24] that used LEAP Search [150]. The following questions were considered:

1. Which suspiciousness metric (of those in Table 6.2) provides the most accurate fault
localization with SWRW?

2. Do the alternative suspiciousness metrics provide better fault localization performance
than Information Gain? Variants of Information Gain predominate in past work on
behavioral fault localization [24,35–37,111].

3. Comparing SWRW to Branch-And-Bound and sLeap (both of which require the Infor-
mation Gain metric) which algorithm provides the best fault localization performance?

A new dataset of five real world programs with injected mutation faults was created. The
programs are all written in the Go programming language. Dynagrok (see Section 6.2) was
used to inject the mutations and instrumentation into them. The injected mutations were
all branch condition mutations which flip the condition (ex. if true→ if false). The faults
created by these mutations are favorable to localization by coverage based fault localization
techniques in general, including all of the techniques considered in this paper. The mutations
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Figure 6.4: Fault localization performance of SWRW (log scaled, lower is better). Each bar gives the average
fault rank for a particular buggy program version and suspiciousness metric from Table 6.2. SWRW was
configured to use walk top colors from Listing 6.4 with p = .2 and w = 2. Subgraphs with at most 100
edges were collected. The experiment was repeated 20 times and the mean results are shown.
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Figure 6.5: Comparision of Branch-And-Bound (B&B), sLeap, and SWRW using Information Gain. In the
first and second graphs each bar represents the average performance for all program versions. The third and
fourth graphs “zoom in” on the fault localization performance for the HTML Parser and the Go Compiler.
Branch-And-Bound and sLeap collected 50 subgraphs each. All algorithms collected subgraphs with at most
15 edges. A 60 second timeout was set of all executions. The experiment was repeated 20 times and the
mean results are shown.
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created do not favor any techniques being compared over any of the other techniques. (In
the future, we would like to support a wider variety of mutations in Dynagrok.)

Table 6.11 shows the programs used in the study. For each program 20 mutants were cre-
ated. Mutants for which there were either no passing tests or no failing tests were removed.
For the AVL tree, tests cases were automatically generated by constructing a random se-
quence of Put, Has, Get, and Remove operations. For the other programs, test cases were
either collected from the Internet (for the HTML parser and the Markdown processor Black-
friday) or the project-supplied test cases were used (for the Javascript interpreter and the
Go Compiler).

A fault rank cost measure was developed to assess the fault localization performance
of Suspicious-Behavior Based Fault Localization (SBBFL). The behaviors (subgraphs) are
scored using a suspiciousness metric and presented to the programmer in ranked order
with the most suspicious subgraph first. The fault rank gives the expected number of
behaviors a programmer would examine before examining a behavior containing the faulty
location(s). This cost measure is similar to the way SBBFL techniques have been evaluated
in the past [24,34,111]. The fault rank gives an objective score enabling comparison between
different suspiciousness metrics for the same program version and between different programs
and versions. However, it is not appropriate to directly compare standard CBSFL techniques
to SBBFL techniques using fault ranks.

All of the algorithms compared in the study have an element of randomness to them.
For instance, Branch-And-Bound algorithms make random choices about which subgraph
to keep when some have equal scores. SWRW is a sampling algorithm and is explicitly ran-
domized. Thus, all experiments were replicated and their results were averaged. Sometimes
the algorithms return no behaviors which contain a faulty location — a localization failure.
To incorporate localization failures into the overall average performance, the maximum fault
rank for the relevant program (across all algorithms) is used as the fault rank when none
of the returned behaviors contain the fault. Using the maximum fault rank as the cost of a
localization failure means that when evaluating the performance of the Branch-And-Bound
algorithms the average fault rank may be higher than the number of subgraphs mined.

Table 6.11: Datasets used in the evaluation

Program L.O.C. Mutants Description

AVL (in https://github.com/timtadh/dynagrok) 483 19 An AVL tree

Blackfriday (github.com/russross/blackfriday) 8,887 19 Markdown processor

HTML (golang.org/x/net/html) 9,540 20 An HTML parser

Otto (github.com/robertkrimen/otto) 39,426 20 Javascript interpreter

gc (go.googlesource.com/go) 51,873 16 The Go compiler

Note: The AVL tree URL was ommitted to preserve the blinding of the review.

Table 6.12: The mean fault rank each metric in Figure 6.4.

Ochiai 40.6 Contrast 40.1 Precision 102.1

Jaccard 42.6 Relative Jaccard 42.5 Relative Precision 101.8

F1 42.6 Relative F1 38.8 Information Gain 131.3
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6.6.1 Which Suspiciousness Measure Works the Best?

Figure 6.4 shows the fault localization performance of SWRW for all applicable suspicious-
ness metrics across all program versions. Table 6.12 gives the average ranks for each metric
across all programs. SWRW was chosen because the other algorithms only support Infor-
mation Gain. For all programs (except the AVL tree), Information Gain, Precision, and
Relative Precision all performed markedly worse than the other metrics. Contrast, F1, Jac-
card, Ochiai, Relative F1, and Relative Jaccard all performed about the same (with some
small differences). This answers RQ1: the best metrics to use are Contrast, F1, Jaccard,
Ochiai, Relative F1, or Relative Jaccard. It also answers RQ2: Information Gain, despite
being the metric of choice in previous studies, was not competitive with five of the other sus-
piciousness metrics considered in this empirical study. As shown in Table 6.12, Information
Gain had the worst average performance of all of the metrics considered.

6.6.2 Which Algorithm Performs the Best?

Figure 6.5 compares Branch-And-Bound, sLeap, and SWRW in various configurations.
Branch-And-Bound (B&B) and sLeap both have two versions. The first version is the one
discussed in Section 6.4. The second version (denoted “B&B (max)” and “sLeap (max)”)
imitates the behavior of SWRW by finding only maximal suspicious subgraphs. SWRW was
run in 4 configurations: k-walks 1 (demonstrating k walks with k = 100 from Listing 6.4)
and 3 configurations of walk-top-colors (demonstrating walk top colors from Listing 6.4 with:
p = .2, w = 2; p = 1, w = 2; and p = 1, w = 10).

The top graph in Figure 6.5 shows the average fault localization performance (log scaled)
for each algorithm on each dataset. SWRW in all configurations performed significantly
better than Branch-And-Bound and sLeap. This can be seen by examining the third and
fourth graphs, which “zoom in” on details for the HTML parser and the Go compiler,
respectively. Since Branch-And-Bound and sLeap were limited to finding 50 subgraphs,
they often failed to mine any subgraph containing the fault. In comparison, SWRW usually
sampled a subgraph containing the fault. This answers RQ3: SWRW provided the best
fault localization performance using Information Gain. As noted above, it provided even
better performance when alternative suspiciousness metrics are used.

The second graph in Figure 6.5 shows the average execution time for each algorithm on
each dataset. The default configuration of SWRW (corresponding to the blue bar) was able
to extract the suspicious behaviors in less than 2 seconds for all of the datasets except that
for the Go Compiler (for which it took 20 seconds). In comparison, Branch-And-Bound
often timed out and had an average execution time of 30 seconds or more. sLeap performed
much better than Branch-And-Bound (thanks to its pruning heuristic) and was competitive
with SWRW. However, as was shown in the first, third, and fourth graphs, SWRW had
much better fault localization performance, which is our ultimate goal.

6.6.3 Summary of Results and Threats to Validity

SWRW outperformed the other discriminative subgraph mining algorithms at behavioral
fault localization. Information Gain, Precision, and Relative Precision all performed markedly
worse than the other suspiciousness metrics. The previous mining algorithms use the Infor-
mation Gain metric, and a technical restriction (see Section 6.4) prevents them from using
any of the other metrics considered in Table 6.2. Since SWRW is not bound by the same
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restrictions as algorithms in the Branch-And-Bound family, SWRW appears to be a better
algorithm to use for behavioral fault localization.

This study only considered suspicious-behavior based fault localization (SBBFL) algo-
rithms. The results are intended to indicate which of the algorithms considered performed
the best at the fault localization task. Further work is needed to fully evaluate SBBFL
algorithms against other approaches to fault localization (statistical or otherwise). Also,
the study considered only injected mutation faults. The results may not fully generalize to
other types of faults. While our study tried to consider a representative set of suspicious-
ness metrics, many other metrics are available [99] and the results shown here may not fully
generalize to those metrics. Similarly, although the programs used in the study were chosen
to represent programs with varying degrees of complexity, it was also necessary to choose
programs with readily available inputs, which limits the generalizability of the results.

Another important threat to validity (for both our study and previous studies [24, 34,
111]) is the use of the fault rank cost measure. Recall that this cost measure is the expected
number of behaviors a programmer would consider before considering a behavior containing
the faulty location(s). This measure is simple to compute and explain but it does not
consider the variable effort a programmer might need to expend on behaviors of different
sizes. Furthermore, while the expectation takes into account the faulty location appearing
in multiple behaviors it doesn’t take into account a programmer skipping behaviors which
contain locations the programmer has already examined.

6.7 DISCFLO: Integrating SBBFL and CBSFL

This section introduces a prototype tool DISCFLO which integrates coverage based statis-
tical fault localization (CBSFL) [99], suspicious behavior based fault localization (SBBFL)
[24], and test case minimization (also called delta debugging) [157]. The basic idea is to
use SBBFL results to re-weight the results of CBSFL. The suspicious behaviors are then
used to help explain to the programmer why each location is marked as suspicious. The
explanation comes in two forms. First, the behaviors are visualized and presented to the
programmer. This helps the programmer get a sense of suspicious flows in the program.
Second, the behaviors are used as test case minimization targets. In delta debugging [157]
a test case is made successive smaller until the program no longer fails. The failure is de-
tected by a failure oracle which automatically detects the subject programs failure. Instead
of detecting failure, in DISCFLO detects the presence of a specific suspicious behavior: the
minimization target. This allows for the creation of a minimal test cases which cause the
program to exhibit the suspicious behavior when executed.

One problem not yet discussed in this chapter with SBBFL is linkage between suspicious
behaviors. Many behaviors reported by SBBFL may be very similar to each other. Even
though SBBFL was formalized to only extract maximally sized behaviors many of those
behaviors can share common substructures. Reviewing the same common structure over and
over again holds no debugging value for a programmer. To address this problem DISCFLO
uses density based clustering to group suspicious behaviors together. The clusters are then
used to re-weight the CBSFL results.

One final element of DISCFLO addresses a fundamental concern with automatic fault
localization: false positives. A recent study by Kochhar et al. [82] used a survey to explore
practicing programmers’ expectations for fault localization. The majority of programmers
who responded felt the idea of fault localization was worthwhile one. However, they had

79



CHAPTER 6. BEHAVIORAL FAULT LOCALIZATION BY SAMPLING SUSPICIOUS
DYNAMIC CONTROL FLOW SUBGRAPHS

Passing
Test(s)

Failing
Test(s)

Instrumented 
Program

Passing
Flow Graphs

Ranked Suspicious Blocks with Associated 
Behaviors and Minimal Test Cases.

RankingMinimizing 
Tests FP Filter

Failing
Flow Graphs

Failure 
Oracle

Suspicious
Behaviors

Graph 
Mining

Figure 6.6: An overview of the DISCFLO fault localization system

extremely high expectations for the accuracy of a localizers demanding the faulty statement
appear in the top 5 to 10 statements in the list.

DISCFLO can use its test case minimization system to exclude potential false positive
suspicious behaviors. The exclusion of all suspicious behaviors which contain a particular
program location (basic block) results in the exclusion of that location. This process is
fully automatic if the programmer can supply a program (called an oracle) to determine
the subject program fails when a running a test input. Even without an oracle the filtering
process can still be conducted manually by a programmer.

The manual false positive filtering process has the advantage of integrating DISCFLO
into a programmer’s debugging work flow. In the future, this integration can be made
tighter. For instance, when a minimal test case is run through the subject program there is
no reason why DISCFLO could not automatically insert debugging breakpoints at the basic
blocks involved in the suspicious behavior the minimal test case was produced from. This
would allow the programmer to quickly zero in on whether or not that behavior is involved
in program failure.

6.7.1 Clustering Suspicious Behaviors

Behaviors returned by SBBFL are often quite similar too each other. This is analogous to
the situation for code clones detected from program dependence graphs described in Section
5.4. The reasons for both problems are the same: frequent and suspicious subgraphs both
form lattice structures (see Figure 2.2). Maximal frequent or suspicious subgraphs share
common sub-structures with each other. These common sub-structures can comprise a
majority of the entire structure. Reviewing more than one of the structures that share the
common sub-structure is often wasted effort both in fault localization and in code clones.

Thus, as in Section 5.4 DBSCAN [43] (a density based clustering algorithm) is used to
cluster the suspicious behaviors. In density based clustering, items α and β cluster together
if the distance between them, according a metric δ, is less than ε: δ(α, β) < ε. Using density
based clustering has two advantages over using an algorithm such as k-means. First, k-
means is parameterized by the number of desired clusters. This makes the k-means (and
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related algorithms) most suitable for applications where the number of clusters is either
known or can be easily guessed. However, there is no such foreknowledge in the graph
mining application. Second, because density based clusters is uses an ε to control when
the two items α and β cluster together the rate at which items are inappropriately paired
can be directly controlled by selecting smaller values for ε and choosing a more appropriate
similarity metric δ.

In fault localization (as in code clones) which basic blocks appear in the behavior is
more important than how they are connected. Motivated, by this observation the similarity
metric used is the Jaccard set similarity coefficient (not to be confused with the Jaccard
suspiciousness metric) applied to the sets of vertex labels of the two subgraphs being com-
pared. The sets of vertex labels in suspicious behaviors is the set of basic blocks involved in
the behaviors.

Using this Jaccard set similarity, DBSCAN places behaviors together which involve the
same (or highly similar) sets of program locations. A programmer can then review just a
representative (or two) from the cluster rather than reviewing every behavior individually.
This saves the programmer time and effort. The real question in the fault localization con-
text is how to rank and score clusters of behaviors. As shown in Tables 6.1 and 6.2 the
suspiciousness metrics for subgraphs are defined in terms of the likelihoods of those sub-
graphs appearing in the dynamic flow graphs from passing and failing program executions,
respectively. Since the likelihood of appearance obeys downward closure (see Definition 2.9,
the likelihood of each substructure appearing is at least as great as the likelihood of the
whole structure appearing. Therefore, subgraphs which share large portions in common
with each other will have similar suspiciousness scores.

Since, everything in a cluster has similar scores the sensible way to assign the score to a
cluster is to take the average. This cluster score neglects on aspect of the cluster which is the
number of items in the cluster. The more items in a cluster the more likely items from that
cluster are sampled by the SWRW algorithm. SWRW samples more suspicious subgraphs
more frequently than less suspicious subgraphs. Therefore, if there are many subgraphs in
one cluster the whole cluster is more suspicious. This leads to a size weighted average. To
prevent the size weight from dominating the score a square root is taken.

Cscore(c) =

√
|c|
|c|+ 1

(∑
h∈c ς(h)

|c|

)
(6.12)

6.7.2 Minimizing Test Cases with Suspicious Behaviors

Suspicious behaviors are program elements which are linked together by control flow. Be-
haviors may have multiple locations where the program many enter the structure during
execution. Furthermore, the behaviors discussed are mined from flow graphs rather than
execution traces. An execution trace is the sequence of locations the program executed.
Thus, if the program executes a location multiple times (as in a loop) there will be an entry
in the trace for each execution. In contrast, a flow graph summarizes this information by
having only one entry for each location (see Figure 6.2). Thus, any given behavior may not
represent a linear execution of the locations involved.

Since the behaviors may not represent a linear execution of the locations involved re-
producing the behavior may not be trivial for a programmer. To solve this problem, we
developed a new test case minimization technique (see Listing 6.5). Test case minimization
(also known as Delta Debugging [157]) takes a test case and repeatedly removes portions of
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it. Each time a smaller test case is created the program is run. If the program fails when
it is run with the new test case then the test case is kept otherwise it is discarded. Using
the smallest test case found so far as the input the process is repeated until no smaller test
case can be found.

The key to Delta Debugging is deciding whether or not a program exhibited failure. For
some bugs which cause the program to crash or obviously misbehave it is easy to decide
if the program failed or not. However, there are other bugs which cause subtle changes to
the output which are difficult to detect. For these, bugs constructing a program (called an
oracle) to automatically determine if the subject program failed may be difficult.

The suspicious behaviors found with SBBFL techniques are considered suspicious be-
cause the metrics indicate their presence is strongly correlated with failure. If a behavior
only occurs when the program fails and never when it does not fail it can be used as a
surrogate oracle to detect failure. This relieves the programmer from the job of writing a
potentially complex program to determine if the program failed or not.

However, there are two problems with this idea. The first is the metrics detailed Table
6.2 do not guarantee that a behavior always occurs when the program fails and never occurs
when it doesn’t. (Although, if such a behavior exists it will almost certainly have the top
score!) The second problem is the program may have multiple faults. A behavior that
occurs when the program fails may simply be a symptom of the failure and the fault. Using
a symptom as a surrogate oracle in a multi-fault program may not isolate the faults from
each other.

When using a suspicious behavior as a surrogate oracle for test case minimization what
really happens isn’t the isolation of the failure but the isolation of the behavior. Listing
6.5 shows the pseudo code for test case minimization in DISCFLO. The function minimize
takes a test case (which is a string of bytes) and a subgraph which represents a suspicious
behavior. It returns a smaller test case which when executed by the program the subgraph
is contained in the execution’s dynamic flow graph. The smaller test case is minimal as no
smaller test case can be constructed from it by removing a sequence of bytes such that its
execution’s flow graph would still contain the subgraph.

The algorithm uses a helper function minimizing mutants to generate smaller test cases.
The smaller test cases are constructed by removing sequences of bytes from the supplied test
cases. For example, all suffixes and prefixes of the supplied test are created. Also created
are test cases which remove substrings from the middle of the test case. The function in the
listing is an example function. More complex functions can be created which are aware of
the syntax of the subject program’s input.

6.7.3 Filtering False Positives with Minimal Tests

A false positive in fault localization is any location in the program that does not contain the
root cause of the fault. A perfect fault localizer would only report the faulty locations and no
other locations at all. In general, programmers have indicated [82] they have little patience
for reviewing suggested locations which do not directly contain the fault. Unfortunately,
past CBSFL techniques have not performed up the standard required by their potential
users [82].

In the Section 6.7.2 a new method for generate behavior-specific tests was introduced.
However, while the minimized tests produced by the algorithm in Listing 6.5 reproduces the
suspicious behavior but it does not necessarily reproduce the failure of the program. What
can be concluded if the minimized test no longer causes the program to fail? The behavior
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1 # param test: string, the test case to minimize
2 # param subgraph: graph, the subgraph the minimal test case’s dynamic flow graph
3 # should contain
4 # returns a smaller test case (if one exists) whose execution’s dynamic flow
5 # graphs contiain the given subgraph
6 def minimize(test, subgraph):
7 cur = test
8 while True:
9 if len(cur) <= 1:

10 return cur
11 found = False
12 for mutant in minimizing_mutants(cur):
13 try:
14 profile = execute(mutant)
15 except ExecutionException:
16 continue
17 if profile is None:
18 continue
19 if subgraph not in profile:
20 continue
21 found = True
22 break
23 if found:
24 cur = mutant
25 else:
26 return cur
27
28 # param test: string, the test case
29 # returns a list of mutants of the test case all made by creating substrings of
30 # the test.
31 def minimizing_mutants(test):
32 suffix = [
33 test[:i]
34 for i in xrange(1, len(test)-1)
35 ]
36 prefix = [
37 test[i:]
38 for i in xrange(1, len(test))
39 ]
40 blocks = [
41 test[:i] + test[j:]
42 for i in xrange(1, len(test))
43 for j in xrange(i+1, min(i + min( max(15, int(.1*len(test))), 100), len(test)+1))
44 ]
45 return prefix + suffix + blocks

Listing 6.5: Python psuedo code for minimizing a test case.

83



CHAPTER 6. BEHAVIORAL FAULT LOCALIZATION BY SAMPLING SUSPICIOUS
DYNAMIC CONTROL FLOW SUBGRAPHS

does not completely describe the fault. For instance, if particular location of the program
was buggy in such a way as to always cause the program to fail whenever executed then a
behavior containing just that location would completely describe the fault. A minimal test
case for that location would result in a test which always resulted in program failure. If a
behavior-minimized test case no longer makes the program fail then that is strong evidence
that the behavior is a false positive and can be filtered out of the results.

In Section 6.7.2 the suspicious behaviors served as surrogate oracles with which to con-
duct the minimization. However, in order to filter false positives an actual failure oracle
is needed. A failure oracle is program which runs a test case in the subject program and
determines if the subject program failed or not. For bugs which cause obvious failures such
as program crashes failure oracles are easy to obtain. For other bugs they are difficult and
labor intensive to write.

A failure oracle may be so labor intensive to create that it is not worth creating one
to apply a techniques like Delta Debugging. Delta Debugging requires an automatic oracle
because it will run the program hundreds or thousands of times to produce a single minimized
test case. To check to see if a suspicious behavior is a false positive the output of the program
only needs to be checked for failure once. Thus, even if a programmer does not want to
invest the time to create failure oracles they can still apply false positive filtering by manually
checking the output of the program.

6.7.4 Re-weighting CBSFL Results with SBBFL

Once DISCFLO has extracted suspicious behaviors, clustered them, and optionally applied
false positive filtering the results can be displayed to the user. Rather than displaying a list of
clusters of subgraphs of dynamic basic block flow graphs, DISCFLO displays a ranked list of
locations. The list is displayed as part of a web application. In the application each location
is click-able. Clicking on a location gives displays associated suspicious behaviors and lets
the user take a variety of actions (such as triggering an additional test case minimization,
manually filtering out a false positive, etc...)

To produce the list DISCFLO re-weights the results of a CBSFL metric. In theory a
separate metric could be used in the SBBFL portion and in the CBSFL portion but currently
the system always uses the same metric. To construct the list, DISCFLO collects all of the
locations that appear in any suspicious behavior found by SBBFL. This may not include
all of the locations in the program (especially if automatic false positive filtering was used).
Each of those locations l is scored using a standard CBSFL suspiciousness metric s(l) (see
Section 6.3). Then each location is weighted by the average score of the scores of the clusters
it appears in.

Definition 6.6 (DISCFLO Location Score). Let C be a list of clusters of suspicious sub-
graphs of dynamic basic block flow graphs. Let L be the set of locations that appear in any
subgraph in any clusters in C. Let m : L → C∗ be a function that maps a location l to the
set of clusters it appears in. The score for a cluster Cscore(c) is as defined in Equation 6.12.
The score for a location is s(l). The DISCFLO score for a location l is

Dscore(l,m) = s(l)

∑
c∈m(l) Cscore(c)

|m(l)|
(6.13)

DISCFLO computes the score Dscore for each location and then orders the locations in the
list by their scores. The highest scoring locations are the most suspicious and appear at the
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AVL Relative-F1

Bug CBSFL DFLO DFLO + FP

1 2.0 2.0 2.0

2 4.0 2.5 3.0

3 3.5 2.5 2.5

4 8.0 43.5 43.5

5 5.0 1.5 1.5

6 93.0 47.5 47.5

7 5.5 4.0 4.0

8 2.0 2.0 2.0

9 7.0 30.5 25.5

10 7.0 1.0 0.5

11 0.5 0.5 0.5

12 4.0 3.0 2.5

13 4.0 5.5 0.5

14 1.5 1.5 1.5

16 6.0 3.5 3.5

17 6.0 3.5 3.5

18 2.5 2.5 2.5

19 5.0 4.0 4.0

20 8.0 22.0 22.0

Table 6.13: Comparison of the performance of CBSFL to DISCFLO with an without false positive filtering
using the RF1 metric for the AVL Tree.

beginning of the list. The lowest scoring locations are the least suspicious and appear last
in the list. Since DISCFLO produces a ranked list just like CBSFL its performance can be
compared directly to CBSFL’s performance.

6.7.5 Empirical Evaluation of DISCFLO

DISCFLO’s fault localization performance was evaluated on the three of programs (AVL,
Blackfriday, and HTML) shown in Table 6.11 which were previously used in Section 6.6.
Tables 6.13, 6.14, and 6.15 show the results of the evaluation. Each table compares the
fault localization performance of DISCFLO (with and without false positive filtering) to
coverage based statistical fault localization (CBSFL) using the Relative F1 suspiciousness
metric. DISCFLO was configured to use SWRW as the SBBFL algorithm with the Relative
F1 objective function. SWRW was run using walk-top-colors (demonstrating walk top colors
from Listing 6.4 with: p = 1 and w = 10. To assess the impact of the false positive filtering
10 tests were minimized for each buggy program version. This provides DISCFLO the
opportunity to discard at most 10 suspicious behaviors which are not related to the fault.

A fault rank cost measure was developed to assess the fault localization performance of
DISCFLO and CBSFL. The locations reported by both algorithms are scored and presented
to the programmer in ranked order with the most suspicious location first. The fault rank
gives the expected number of locations a programmer would examine before examining a
behavior containing the faulty location(s). The fault rank gives an objective score enabling
comparison between CBSFL and DISCFLO.

As can be seen in the datatables, DISCFLO often (but not always) outperforms CBSFL.
DISCFLO’s superior performance at fault localization supports the idea of using informa-
tion from suspicious behaviors to re-weight the localization scores provided by standard
CBSFL suspicious metrics. DISCFLO’s false positive filtering mechanism often improves
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HTML Parser Relative-F1

Bug CBSFL DFLO DFLO + FP

1 1.0 1.0 1.0

2 22.5 173.5 177.5

3 41.5 9.0 12.5

4 13.5 13.5 8.5

5 28.5 281.5 281.5

6 32.0 48.0 46.5

7 1.5 1.5 1.5

8 13.5 10.0 3.0

9 13.5 1.0 5.5

10 12.0 9.0 12.0

11 4.5 213.0 211.0

12 45.0 106.5 118.5

13 ∞ ∞ ∞
14 5.0 5.0 4.0

15 12.5 18.0 3.0

16 3.5 3.5 3.5

17 5.5 10.0 9.0

18 28.0 268.0 263.0

19 13.0 1.0 5.0

20 6.5 4.0 4.0

Table 6.14: Comparison of the performance of CBSFL to DISCFLO with an without false positive filtering
using the RF1 metric for the HTML Parser.

Blackfriday Relative-F1

Bug CBSFL DFLO DFLO + FP

1 7.0 5.0 5.0

2 55.5 57.5 57.5

3 1409.5 1444.5 1444.5

4 1363.0 1457.0 1457.0

5 2.0 2.0 2.0

6 5.0 8.5 8.5

7 7.0 7.0 7.0

8 152.5 120.5 92.5

9 12.0 11.0 10.5

10 28.0 9.5 9.5

11 348.0 474.0 475.0

12 668.0 378.0 378.0

13 0.5 0.5 0.5

14 120.0 1611.0 1607.0

15 2.5 2.5 2.5

16 1399.0 1416.0 1416.0

17 3.0 1244.0 1246.0

18 573.0 632.0 631.0

20 30.0 1243.0 1238.0

Table 6.15: Comparison of the performance of CBSFL to DISCFLO with an without false positive filtering
using the RF1 metric for the blackfriday Markdown library.
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DISCFLO’s fault localization accuracy. For instance for the HTML Parser’s Bug-15, DIS-
CFLO’s fault rank improved from 18 to 3.

6.8 Conclusions

We presented Score Weighted Random Walks (SWRW), a new algorithm for suspicious-
behavior based fault localization (SBBFL). SWRW randomly samples suspicious subgraphs
of dynamic control flow graphs of passing and failing executions, favoring selection of the
most suspicious subgraphs. Unlike previous algorithms for SBBFL, SWRW may be used
with a wide variety of suspiciousness metrics. Nine metrics were adapted from coverage
based statistical fault We also presented DISCFLO which extends SWRW with test case
minimization. An empirical study was conducted on five real world programs written in the
Go programming language. To support the study a new profiling tool for Go, Dynagrok,
was developed. The results indicate that SWRW is more accurate and scalable than similar
behavioral fault localization algorithms.

87



Chapter 7

Related Work

Finding graph patterns in program code [22, 59, 72, 83, 85, 93, 106, 108] and behavior [24,
34–36, 94, 97, 100, 103, 111, 137, 156] is a powerful tool for solving pressing challenges in
software engineering. Frequent subgraph mining is used to find duplicated code (code clones)
[59,83,85], identify implicit specifications [22], isolate bug patterns [135,137], localize faults
[24,34–36,94,97,103,111,156], detect plagiarism [93], and construct auto-complete systems
[106]. Despite all of these studies showing the great promise of frequent subgraph analysis
it is still regarded [16,119,123–125], as a curiosity for analyzing program code.

Many of the studies analyzing program code mined variants of the Program Dependence
Graph (PDG) [46], a labeled directed graph. In PDG’s, the vertices represent computa-
tional operations such as arithmetic or branch instructions. The edges are labeled and
represent either data or control dependence between operations (see Figure 4.1 on page 33).
The studies analyzing program behavior largely examined the dynamic flow graphs [24, 94]
potentially augmented with extra data. Dynamic flow graphs summarize the control flow
paths executed by a program at run time (see Figure 6.2 on page 56). Like the PDG, a
dynamic flow graph is a labeled directed graph.

7.1 Frequent Subgraph Mining

Frequent pattern mining was first proposed by Agrawal et al. [4] for the purpose of finding
association rules by mining frequent itemsets. Agrawal and Srikant developed the Apriori [5]
method for frequent itemset mining. Each step Apriori proceeds by finding all patterns of
size k using the results of the previous step which found all patterns of size k−1. Apriori can
be viewed as a level wise exploration of the frequent itemset lattice. Han et al. developed
FP-Growth method for finding frequent patterns in [55]. FP-Growth, in contrast to Apriori,
grows a single pattern at a time and can be viewed as a depth first exploration of the frequent
itemset lattice. Aggarwal provides a recent survey of frequent pattern mining [3].

Many algorithms have been developed for frequent subgraph mining specifically. Classic
algorithms such as AGM [71], gSpan [151], MoFa [18], FFSM [66], or GASTON [110] find all
the frequent subgraphs in a database. Wörlein et al. [148] provides an empirical analysis of
these approaches. Other algorithms, for instance SPIN [67], find just the maximal frequent
subgraphs or the closed frequent subgraphs [152]. Finally, Cheng et al. [25] provides a recent
overview of current directions for mining subgraphs from a database of graphs.
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The most important algorithm developed for the transactional setting is gSpan [151].
gSpan presents a number of important innovations. First, it used a depth first search of
the frequent subgraph lattice (see Figure 2.2). Using a depth first search greatly reduces
the amount of memory required during mining in comparison to conducting a breadth first
search. When conducting a breadth first search each “level” of the lattice must be loaded
into memory. Because frequent subgraph lattices tends to be much wider than they are
deep this causes excessive memory usage.

Second, gSpan introduced the concept of the Minimum DFS Codes for solving the Graph
Isomorphism Problem [101]. In Minimum DFS Codes a ordering is established between
Depth First Search (DFS) trees. Then using a search algorithm the minimal DFS tree is
found according to the ordering. This is used to create a canonical label called the Minimum
DFS Code to represent the graph and all of its automorphisms. Using the canonical label
gSpan can easily check to see if a graph has been previously considered.

Canonical labels are a well established method for solving the graph isomorphism prob-
lem [77,101] and Minimum DFS Codes are not competitive in terms of efficiency compared
to modern approaches. gSpan uses Minimum DFS Codes to enable a more important op-
timization called the right most extension. The right most extension allows gSpan to skip
the generation of most candidate subgraphs (see Section 3.2.1). Right most extension uses
the structure implied by the ordering established between DFS trees to choose only some of
the vertices in the graph as potential extension points.

The effective combination of a depth first exploration of the lattice using the right
most extension gives gSpan a strong advantage over other methods. However, despite the
fundamental importance of the technique there are exposition problems with the paper which
confuse rather than illuminate the overall approach. Wörlein’s explanation and empirical
analysis [148] ameliorates the problems with original explanation and his implementation in
ParSeMis1 is the standard implementation used today.

7.1.1 Mining Connected Graphs

Mining connected graphs is a generalization of the original transactional case. Inokuchi
et al. [71] first formulated frequent subgraph mining where the database D is a set of
transactions such that each “transaction” is a small graph. Kuramochi and Karypis [87]
recognized the limitation of Inokuchi’s formulation and re-formulated the problem as mining
recurring subgraphs in a single graph. In this setting, the transactional case can be viewed
as a special case where the graph being mined is disconnected. When mining for subgraphs
of a single graph a key question is how the miner defines the frequency or support of the
graph. This question does not even arise in the transactional case but is critical in the
single graph case. The most commonly used support metrics are: Maximum Independent
Subgraphs (MIS) [87], Minimum Image Support (MNI) [19], and G-Measure [73].

The first study involving mining large graphs introduced the SUBDUE system [27].
SUBDUE predates the work by Inokuchi and does not use the same theoretical framework.
Instead, the SUBDUE system attempts to compress the dataset by identifying recurring
substructures. Kurakmochi and Karypis [87] created two algorithms to mine frequent sub-
graphs under MIS. One algorithm, hSiGram, mined using a breadth first search while the
other, vSiGram, used a depth first search.

Bringmann and Nijssen [19] did not define a new mining algorithm but they studied
the problem of frequency in connected graphs, defining MNI. Jiang et al. [73] created G-

1https://www2.cs.fau.de/EN/research/zold/ParSeMiS/index.html

89



CHAPTER 7. RELATED WORK

Miner and defined the G-Measure support metric, which finds approximately minimally
overlapping embeddings. Jiang et al. did not know of the work of Bringmann and Nijssen
nor that of Kuramochi and Karypis, and they formulated their support measure using a
different theory.

Hellal and Romdhane [58] presented NODAR for mining patterns using the SMNOES
support metric. It turns out that SMNOES is equivalent to the MIS metric [87], which the
authors appear to have been unaware of. SMNOES is formulated using the theory presented
in Jiang et al.’s work. Unfortunately, NODAR is not competitive with current systems (such
as GraMi [39]) according to their published performance numbers.

Elseidy et al. [39] presented GraMi2 which solves support computation through a novel
subgraph matching algorithm. Their work is based on the ParSeMiS3 Framework [148].
GraMi has several innovative pruning strategies and views the subgraph matching problem
in terms of constraint solving. One of its pruning strategies, Push Down Pruning, could be
viewed as “dual” of Overlap Pruning in Section 3.2.3 (see Lemma 3.2). Push Down Pruning
prunes potential vertices of G which have been proven not to be part of an embedding of a
previous subgraph. In contrast, Overlap Pruning restricts the matching process to vertices
of G which have been part of an embedding of a previous subgraph.

Talukder and Zaki [139] created Dist-Graph, a distributed frequent subgraph miner for
large connected undirected graphs that is based on the C++ gSpan [151] implementation
in gBoost [86]. Dist-Graph demonstrates an efficient way of distributing MNI computations
across a network of compute nodes. Each compute node holds only a partition of the whole
graph being mined. The effectiveness of the system was demonstrated on an IBM Blue Gene
system mining a billion node graph with high support.

Dist-Graph represents an orthogonal improvement to frequent subgraph mining. The
contributions from REGRAX are new pruning techniques, support measures, and a focus
on extraction of very low frequency recurring subgraphs. Dist-Graph’s sequential mode is
gBoost’s C++ implementation of gSpan modified to count support using MNI. Because
Dist-Graph uses the “store-and-grow” (see Section 3.2.3) approach to support counting it
cannot extract low frequent subgraphs from large graphs, as its memory usage increases dra-
matically. In the future, the techniques in Chapter 3 could be combined with the techniques
in Dist-Graph to make an even faster system.

7.1.2 Sampling Techniques

Zou and Holder’s 2010 paper [160] developed a sampling technique for finding frequent
subgraphs of large graphs. Their method creates a representative sample of the large graph.
Frequent subgraph mining is then performed on the sample. Hübler et al. devised an
approach for selecting subgraphs with properties representative of a large graph in [68]. The
sampled subgraphs are not guaranteed to be frequent. Leskovic and Faloutsos concluded
in [89] that a number of random walk strategies for sampling subgraphs of large graphs
can preserve important properties of the original graph. For frequent itemset mining, a
variety of sampling algorithms have also been produced. An early example is Toivonen’s
algorithm [144].

The Unweighted Random Walk approach to sampling frequent subgraphs was first pro-
posed in ORIGAMI [23]. Henderson and Podgurski [59] provided a more efficient technique
to compute sampling probabilities and used them to estimate the overall relevance of code

2https://github.com/ehab-abdelhamid/GraMi
3https://www2.cs.fau.de/EN/research/zold/ParSeMiS/
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clones found with frequent subgraph mining to professional programmers. Musk [7] con-
structs a Markov process that samples the maximal subgraphs uniformly given enough
time. Al Hasan et al. proposed a Metropolis-Hastings approach [8] to uniformly sample
all frequent subgraphs (as opposed to just the maximal subgraphs). FS3 from Saha and
Al Hasan [126] extends the Al Hasan’s past work with “sideways” jumps in the frequent
subgraph lattice to extract the top-k most frequent subgraphs.

Like the previous work FS3 allows both forward and backward motion in the lattice
which makes this approach less efficient over all at sampling then the forward approaches
like GRAPLE and ORIGAMI. However, because both forward and backward motions are
allowed the chains Al Hasan defines are ergodic which means they converge to a stationary
distribution and if the chains are allowed to mix then sampling from the chains samples
from the stationary distribution. Al Hasan defines the chains such that the stationary
distribution is uniform over the states of interest. The important point (overlooked by Al
Hasan) is the chains must mix before sampling is conducted [90]. It is difficult to say in
general what the minimum number of transitions is required for arbitrary chains to be mixed.
Upper bounds on the minimum tend to be conservative [90] and if taken would make these
algorithms impractical due to the cost of each transition in the chain. More theoretical work
and empirical work is needed on ergodic chains for sampling frequent patterns to establish
appropriate bounds on the required mixing times.

Zhu et al. [158] created SpiderMine which mines smaller graph patterns (called spiders)
and then joins them together to get much larger patterns. In contrast to other work,
SpiderMine only returns the k largest patterns with probability 1 − ε where ε is a user
specified accuracy parameter. SpiderMine is evaluated against ORIGAMI [23] for finding
large patterns. Zhu et al. conclude ORIGAMI cannot find large patterns. However, the
results presented in the paper contradict results found during the GRAPLE study [59] which
found many large patterns. The SpiderMine evaluation did not discuss the number of walks
ORIGAMI was allowed nor running time making the evaluation suspect.

7.1.3 Significant and Discriminative Techniques

Section 6.4 introduced significant subgraph mining [11,17,56,57,86,96,118,127,134,140,149,
150] an alternative to the usual frequent subgraph mining problem. Instead of looking for
subgraphs which are at least k frequent in the database in significant subgraph mining the
problem is to find the most important subgraphs as judged by some objective function. The
objective function (usually denoted F (g) where g is a graph) gives higher scores to more
important graphs and lower scores to less important graphs.

There are two settings for significant subgraph mining. In the first, the problem is to
find all graphs g such that F (g) > δ for some importance threshold δ. In this setting
F should behave in a generally anti-monotonic fashion (a v b =⇒ F (a) ≥ F (b)) to
avoid the enumeration of every subgraph of the dataset D. The second setting searches
for the most important graph(s). It is often formulated as finding a graph g∗ such that
g∗ = argmaxgF (g).

Kudo et al. introduced gBoost [86] (which coincidentally DistGraph’s [139] code is based
off of) which integrates discriminative subgraph mining into gSpan [151]. gBoost was the
first study to examine the significant subgraph mining problem and it sought to minimize
the error rate of a decision stump classifier for graphs. The objective was flipped and turned
into the problem of finding the subgraphs which maximized a certain gain function which
is exactly the significant subgraph mining problem. gBoost introduced the first Branch-
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And-Bound algorithm (see Section 6.4 for a description) to solve the gain maximization
problem.

Following Kudo’s work, He and Singh conducted two studies on extracting significant
subgraphs [56, 57]. Their first study [56] used CloseGraph [152] to extract closed frequent
subgraphs and then used p-values to identify and rank the significant graphs. CloseGraph
is an extension of gSpan [151] which only returns graphs which are on the border of a
frequency boundary in the frequent subgraph lattice. To compute the p-values the frequent
subgraph are transformed into feature vectors. The p-value of a graph is then computed as
the probability of its feature vector occurs in a random distribution of feature vectors. He
and Singh’s second study [57] looked at providing proven quality guarantees when extracting
significant graphs. They formulate their problem as an instance of the k-MST problem. k-
MST looks to find the minimum weight spanning tree with at most k vertices. To solve the
problem they use dynamic programming to solve k-MST in an un-rooted undirected tree.
They then generalize their solution to the context of rooted undirected graphs.

Saigo et al. [127] applied partial least squares regression to graph data with gPLS. gPLS
uses the Branch-And-Bound framework developed in gBoost [86] to extract the patterns
which are used in the regression. The regression uses a graph G as the independent variable
which determines the dependent real valued variable y . The model is trained on a set of
graphs G1, G2, ..., Gn and values y1, y2, ..., yn to predict the value y ′ of a new graph G′. To
train the PLS model features are extracted from each graph. The features (significant sub-
graphs) found using a modified version of the Branch-And-Bound framework which extracts
all graphs with significance greater than a certain ε.

The next major development in significant graph mining was LEAP Search by Yan et
al. [150]. Their algorithm is discussed in detail in Section 6.4. Briefly, it LEAP Search
proposed to major improvements to the Branch-And-Bound framework. The first was a
heuristic algorithm, sLeap, which skipped portions of the search space if they appeared very
similar to portions already considered. These “leaps” might skip the most significant graph
but most of the time would not. The heuristic algorithm was embedded in a new frequency
descending algorithm which produced the exact solution.

GraphSig [118] returned to the p-value formulation first proposed in He’s work [56]. In
comparison to the previous work GraphSig improves the extraction of feature vectors. Each
graph in the dataset is viewed as an ergodic Markov chain. The states of the chain are the
vertices in the graph. The transition probabilities from one state to any of its neighbors
in the graph is uniform. Finally, with probability 1

α the Markov process returns to its
starting node. To build a feature vector a Markov process is started from each vertex. At
each transition of the process the feature vector of the starting vertex is updated with the
label of the current vertex. The final algorithm in GraphSig then combines mining closed
sub-vectors from the feature vector space with frequent subgraph mining. The new SWRW
Algorithm from Section 6.5 also uses Markov chains. However, SWRW chain is defined over
the suspicious subgraph lattice not over the graphs from the dataset.

Proposing another Branch-And-Bound technique for discriminative mining Thoma et
al. [140] presented CORK which integrates a different pruning operator into gSpan. The
pruning operator is depending on a submodular quality function q. Instead of operating on
a single graph (like the normal objective function F ) q operates on the set of discriminative
graphs. The submodular condition ensures that the improvement of adding one more graph
to the set of discriminative graphs is marginal. The marginality means that adding the same
graph to a smaller set of discriminative graphs always has a greater effect on the quality
score q than adding it to a larger one. Much like in gBoost or LEAP Search a upper bound
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is found for their chosen quality score. However, unlike in LEAP Search the bound does
not generalize to a class of scores and is specific to the score defined in the paper. CORK
uses its new bound to help prune the graphs considered by gSpan. However, CORK runs
gSpan in a loop each time expanding the set of discriminative graphs by one graph until no
improvement is made.

Arora et al. [11, 17] considered a new take on the problem. They were interested in
graphs which were created from spatial or geographical datasets. The vertices in the graphs
considered each has one label drawn from drawn from a known or assumed distribution
of labels. They considered both discrete labeling distributions and continuous. Using this
assumption the chi-square (X2) statistic was used to quantify the statistical significance of a
subgraph. The problem they considered was extracting the top-k most significant subgraphs
according to the X2 statistic. Their unique approach identified the strongly connected
components (their graphs are undirected) in the graphs. The connected components were
then contracted into a single vertex in a new “super-graph” of the original graph. As long
as the new “super-graph” is “dense-enough” a naive enumeration of all possible significant
subgraphs of the “super-graph” is conducted to identify the topk most significant subgraphs.

7.2 Code Clones

Code clones have been a rich area of research for many years and there a several recent
surveys available [16,119,124,125] which cover the full range of detection and management
techniques. Recent work by Sajnani et al. on SourcererCC [128] showed that clone de-
tection can scale to 100 MLOC when programs are represented as bags-of-tokens. It took
SourcererCC only 1 1

2 days to find all of the clones from an artificially constructed code base
consisting of 100 MLOC. In the SourcererCC study, the latest version of CCFinder [79]
(CCFinderX) was competitive with SourcererCC on most benchmarks in terms of time,
precision, and recall.

Krinke’s Duplix algorithm [85] and Komondoor and Horwitz’s algorithm [83] were the
first attempts at detecting code clones from PDGs. Komondoor’s algorithm found pairs of
clones by slicing backwards and then forwards from matched starting vertices. However,
the forward slicing operation is only applied when matching control vertices are discovered.
Komondoor also applies a variety of heuristics to filter out certain types of clones. After
pairs are identified, ones that include the same locations are grouped together and subgraphs
are discarded in favor of their super-graphs. Higo and Kusomoto [61] created Scorpio, which
extends Komondoor’s algorithm to detect contiguous clones by adding links into the PDG.
Krinke’s algorithm Duplix is similar to Komondoor’s but restricts itself to forward slicing
up to a limit of k edges. Both of these algorithms, unlike the one presented in this paper,
tend to find long paths through the PDG instead of general subgraphs (containing any edge
structure) such as the one in Figure 5.1.

Gabel et al. [48] introduced another formulation by mapping PDG’s to abstract syntax
trees. They used the well known AST based clone detection tool DECKARD [72]. Higo
and Kusomoto [61] extended Komondoor’s algorithm to detect contiguous clones by adding
execution dependencies to PDGs. They also merge similar nodes in a PDG. ModelCD from
Pham et al. [112] detects code clones in Matlab/Simulink models by converting them to
labeled directed graphs. They present an exact and an approximate algorithm both of which
traverse the connected subgraph lattice. The exact algorithm uses a depth first search in the
manner of vSiGraM [87]. The approximate algorithm is a breadth first search with a pruning
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step. Higo et al. [62] presented an incremental approach to PDG based code clone detection,
to improve its scalability. Part of their solution is to make the mining process interactive by
having the user request clone information for specific files or methods. Hummel et al. [70]
also present an incremental approach, but one intended for Matlab/Simulink models. They
index the model graphs using small frequent graph motifs, allowing for incremental updates
to the index and a speed up for detection.

Nguyen et al. [105, 107] created a two code completion tools based on the code mining
tool in [109]. Both tools work by first building a graph database of groums which are
object/object interaction graphs. The tool described in paper [107] builds a query groum
based on the surrounding context. It then uses a weighted graph matching algorithm to find
suggestions using a relevance score. The second tool [105] uses a Bayesian statistical model
to suggest likely completions based on the surrounding context and the graph database.

7.3 Fault Localization from Behavior Graphs

There have been a number of studies [24, 26, 34–37, 94, 97, 100, 103, 111, 156] combining the
statistic fault localization approach with graph mining. In general, the framework is similar
to the statement coverage approach [99]. The program is instrumented to collect a record of
runtime behavior. However instead of collecting statement executions, the instrumentation
records a dynamic flow graph which provides a context insensitive approximation of the
relative ordering of statement execution. Such a graph can be fine grained and collected at
the basic block level or coarse grained and collected at the procedure level. Figure 6.2 shows
an example dynamic basic block flow graph.

C. Liu, X. Yan, H. Yu, J. Han, and P. Yu [94] first introduced the idea of mining program
behaviors to localize faults. Xifeng Yan and Jiawei Han had previously created gSpan [151],
CloseGraph [152] but had yet to create LEAP Search [150] at the time of this paper. The
big idea was to find “backtraces” for program failures which do not cause the program to
crash. The backtraces found are portions of the behavior graphs which are associated with
failing runs. The paper trains support vector machine classifiers with linear kernels for each
function entrance and exit. The classifiers predict whether the program failed or not but
are only trained on data up to the associated entrance or exit (collected via crafted unit
tests). The classifiers uses frequent subgraphs mined with a variant of CloseGraph [152]
called CloseMine as the features of each execution in the training set. The final step is to
use the accuracy of the classifiers on the training set to identify which methods are relevant
to the bug and assemble them into a “backtrace.”

Di Fatta et al. [34] proposed an alternative application of discriminative pattern mining
using function call trees. The call trees are collected from executions of the program in a
similar way to flow graphs but distinguish between different calling contexts (unlike flow
graphs which coalesce the contexts). Di Fatta uses a frequent subtree mining algorithm
(FREQT) to extract frequently occurring subtrees from the collected call trees. The frequent
subtrees collected are size limited and are collected independently from both the failing and
succeeding executions. They then use the Precision metric (see Table 6.2) to compute how
suspicious each frequent subtree is. The evaluation compared coverage based statistical
fault localization (CBSFL) [99] using the Precision metric to the proposed method. In
the evaluation a bug was considered localized once the subtree which contained the faulty
location was considered. This evaluation standard was unfair to CBSFL as CBSFL ranks
each location individually. Many of the later studies repeat this oversight.
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One problem Di Fatta et al. encountered when mining call trees was scalability limita-
tions. Di Fatta addressed theses issues by having extremely stringent limits on the number
of edges allowed in a mined subtree; allowing at most 4 edges. One reason for Di Fatta et
al. may have had difficulty mining larger subtree is due to the structure of the call trees
themselves. Most call trees contain repeated calls and redundant information. Eichinger et
al. [35] recognized this limitation and applied a reduction algorithm on the call trees. The
algorithm transformed the call trees produced by the profiler they used into edge weighted
function flow graphs. These are similar to the graph shown in Figure 6.2 but are more
coarse grained only containing the vertices which represent functions.

The edge weighted function flow graphs (also called weighted dynamic call graphs) were
mined using the CloseGraph [152] algorithm that was implemented by Wörlein [148] in
ParSeMiS. Eichinger then used the Information Gain metric (see Table 6.2) to rank both
the behaviors mined with CloseGraph and the methods in those behaviors. The locations
in the method are also ranked using finer grained coverage information. The version of
InformationGain used is modified from the version presented in Table 6.2. It takes into
account not only the number executions the behavior appears in but also the edge weights
which indicate the number times each edge in the graph was traversed.

D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun [97] developed an approach for using
identifying discriminating iterative sequence patterns to classify whether or not an execution
trace was recorded from a failing execution. This work is not strictly fault localization work
but it is closely related. The mined patterns are iterative patterns which extend sequence
patterns by including a repetition operator. The paper defines a mining algorithm to detect
the patterns and uses the detected patterns as features in a classifier.

H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan [24] used LEAP Search [150] by X. Yan
to localize faults. The faults were localized to suspicious behaviors which are subgraphs of
either dynamic basic block flow graphs or dynamic function flow graphs (call graphs). Their
approach is covered in detail in Section 6.4.

HOLMES [26] recognizes the potentially high amount of overhead introduced by de-
tailed profiling techniques needed to collect the data to enable techniques like Cheng’s [24].
HOLMES consists not only of a localizer which finds suspicious execution paths but also an
adaptive profiler. The system automatically increases the granularity of suspicious areas of
the program based on profiles, bug reports and other information from the field. At the finest
granularity HOLMES collects path profiles [15]. The localizer component finally computes
a statistical association metric to identify the most suspicious paths in the program.

In 2010 Eichinger followed up on the work from 2008 [35] with a new mining approach
which included dataflow information in the call graphs [36]. The call edges were annotated
with both the number of times the edge was traversed and the parameter values which were
passed between the caller and the callee. Primitive values were recorded as, but strings,
collections, and array values were reduced to their size. To produce the graphs the values
were discretized by forming intervals. The intervals then became categorical labels on the
edges. Eichinger once again used CloseGraph [152] from ParSeMiS [148] to mine frequent
subgraphs from the set of dataflow enabled call graphs. Then following closely with the
previous study [35] a new suspiciousness score was derived from Information Gain that
made use of the extra information on the edges of the graph.

Then in 2011 Eichinger [37] applied an approach to solve the same problem HOLMES
addressed. Recall, HOLMES was sensitive to the large amount of overhead potentially
required to collect execution traces and call trees. Eichinger provide a general method
for hierarchical localization. The hierarchy can in principle include any number of levels
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but they consider three: package, class, and method level localization. By introducing the
hierarchy Eichingers approach can potentailly save profiling overhead but it also decreases
the difficulty of the graph mining step [152].

Parsa et al. [111] present an alternative algorithm to LEAP Search [150] for finding the
top-k discriminative subgraphs for fault localization. Their algorithm fits into the Branch-
And-Bound framework and they claim similar performance to LEAP Search. They define
their own suspicious metric which they call the FScore. Since their algorithm is a Branch-
And-Bound algorithm they also provide an upper bound for their score. However, unlike
the LEAP Search paper their algorithm description is lacking in important details and
imprecisely specified.

Mariani et al. [100] combine Dynamic Specification Mining proposed by Ammons [10] and
fault localization. They learn a finite state automata model of the relationships between
methods associated with particular objects in the program. The models are built from
execution traces and I/O models produced by Daikon [41]. The behavior models are scored
and ranked much like in other approaches to identify anomalous behaviors.

Call tree based defect localization is revisited by Yousefi and Wassyng [156]. Like
Eichinger [35–37], Yousefi and Wassyng start with tracing but instead of producing weighted
call graph they produce reduced call trees. They then apply a frequent subtree mining algo-
rithm to identify frequent closed subtrees from the reduced call trees of successful executions.
They then define a number of metrics on the subtrees which are used for scoring the sub-
trees. The subtrees are then matched against failing reduced call trees to find missing
method calls or deviations from the mined patterns. In this way the mined subtrees act as
dynamic specifications [10].

7.4 Test Case Generation and Minimization

There has been some previous work on test case generation that is driven by behavioral
properties. For instance, the American Fuzzy Lop (AFL) fuzz tester uses feedback from the
behavior of the program to select the next best mutation to explore.4 Like Dynagrok (my
proposed instrumentation system), AFL instrumentation collects a fine grained dynamic
flow graph of the program. Unlike Dynagrok which uses source level instrumentation, AFL
does so by instrumenting the target binary.

Patrice Godefroid [50–53] has created a number of systems for generating test cases using
feedback from both the behavior the program under test and from symbolic execution of
the program. Andreas Zeller created Delta Debugging [157] which is a strategy to minimize
test cases with respect to a failure oracle (usually the program crashing). AFL includes
a test case minimizer based on delta debugging which uses program crashes as the oracle.
In contrast to this work, my proposed system would minimize the test cases with respect
to a frequently occurring behavioral graph fragment which is correlated or even potentially
causally related to the failure [12, 13]. This minimization strategy can be combined with a
failure oracle (if one exists) to prevent false positives.

4AFL is not academic work but is arguably the most effective general purpose fuzzing system that is
widely available today. It has found many critical bugs in many different types of programs. For more
information see: http://lcamtuf.coredump.cx/afl/ and http://lcamtuf.coredump.cx/afl/technical details.txt
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7.5 Specification Mining

Specification mining is a broad field spanning static [2,9,21,22,40,47,78,84,91,95,102,109,
116, 117, 131, 135, 136, 145, 147] and dynamic [10, 28, 31, 32, 38, 41, 42, 98, 115, 121, 153, 154]
approaches. The modern study of Specification Inference or Mining Specifications can be
traced back to Ernst et al.’s paper “Dynamically Discovering Likely Program Invariants to
Support Program Evolution” [41]. The Ernst approach is a dynamic analysis and it works
by instrumenting the target binary. The binary is instrumented to capture the values of
variables at various program points. The algorithm then took those values and tried to
inference invariants for the program variables. For example the algorithm might infer5

1 // pre-condition: N >= 0, N = length(B)
2 // post-condition: S = sum(B)
3 func f(B []int, N int) int {
4 i, s := 0, 0;
5 while (i != N) { // invariant: i > 0, i <= N
6 s = s + B[i];
7 i = i + 1;
8 }
9 return s;

10 }

In order for this to work a reasonable test suite needs to be provided. This has become
one of the hallmarks of specification mining – dynamic analysis coupled with a test suite.
The work is some what unusual however in that it tries to infer program invariants, later
works will focus heavily on temporal orderings. There are however some problems with their
approach. The first is the Ernst system is not fully automated requiring human operation
at various points. Automation is key for adoption and later work attempts to address this
issue with varying degrees of success.

7.5.1 Graphical Specification Mining

An important technique for mining specifications was first described in 2008 by Chang et
al. [21,22,135,136]. The Chang et al. system works by mining Program Dependence Graphs
(PDGs) [30,46,64,65,104,113,114,143]. It begins the mining process by using a commercial
tool, Code Surfer, to construct the System Dependence Graph (SDG) [65]. The SDG is
further annotated with new edges called Shared Data Dependence Edges (SDDEs) which
connect nodes which are related by control flow and share a direct data dependency. These
edges have turned out to be useful in practice for mining rules where such relations are
semantically important. The SDE with the addition of the SDDEs is referred to as the
Enhanced System Dependence Graph (ESDG).

After the ESDG is constructed candidate centers for mining are identified. In principle
one could start with every node in the ESDG however in this work the authors choose
only function call sites. Once the candidate nodes are identified a dependence sphere is
grown around the candidates. This starts by identifying the Call Site Graph graph which
contains all nodes related to formal parameters of of the function call. The sphere is then
grown by adding nodes which have a direct data dependence relation with some node in the
sphere until a threshold size is reached. Finally, the sphere is pruned by a process called
reduction to remove nodes likely to contribute noise to the mining process. During reduction
certain transitive relations are also made more explicit by introducing new edges. The final

5 This example is adapted from the example provided in the paper. See figures: 1-3
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dependence sphere is referred to as the *Fully Reduced Dependence Sphere* or FDRS in
the paper.

The mining algorithm presented in the Chang et al. work uses a two phase process
to first grow a frequent item set of connected nodes in a graph minor and second to add
frequent edges between the nodes in the minor. The algorithm starts with the nodes in the
Call Site Graph surrounding the candidate node. It then employs an iterative extension
process where at each step a new node is added to the set. It only adds nodes which are
directly connected by some edge to some node already in the set. It only adds such a node
if the edge the nodes is connected by is found to be frequent via Frequent Item Set mining.
Care is taken during the extension process that isomorphic instances will have identical
labellings.

Once the nodes which constitute the frequent minor have been identified the edges must
be selected. As with node selection, frequent item set mining is used as a subroutine to
find frequent edges between nodes in the minor. Finally, some filtering takes place as a
post-processing step to remove trivial frequent minors which are likely un-interesting.

The Chang system has been extended in a variety of ways. The above description
describes the latest version as described in [21]. The follow up work by Sun et al. in [136]
focusses on translating the mined rules into checkers for a commercial static analysis tool.
While her work in [135] looks to integrate a supervised learning into the rule and violation
review process.

Nguyen et al. describe a related approach to the Chang system in [109]. Instead of
mining detailed dependency patterns however their system looks to mine temporal object
interactions. The goal is an extension of Ammons et al. where instead of looking a single
objects the authors attempt to mine multi-object interactions in Java. The authors begin by
constructing a graphical representation with two types of nodes, method calls and control
nodes. Edges are added to represent data dependencies and control flow. They then use
a frequent subgraph mining algorithm to identify candidate rules. In comparison too the
Change approach there is less potential power since the representation is simpler. However,
less detail also means less noise which potentially means fewer false positives.

7.5.2 Mining Error Handling Specifications

In comparison to the broader field of specification inference there has been little work on
error and exception handling specifications. Many papers specifically ignore error handling
routines in an attempt to reduce noise. However, two groups, Necula’s and Xie’s, have
investigated several different approachs.

In 2004 Weimer and Necula investigated the prevelance of semantic violations in ex-
ception handling code. The chose objects which had specifications readily available and
created a tool to find violations of the known semantics. The tool used context sensitive
intra-procedural data flow analysis to check for errors and looked specifically at aquire/re-
lease APIs in the Java Platform API. The authors found many programs contained errors
around these resource management APIs and concluded that new language tools are needed
for resource management.

Weimer and Necula followed up their 2004 work in 2005 with a system for mining tem-
poral specifications based on Engler’s 2001 work [40, 146]. The author’s main conlusion
from the 2004 work was, “Client code frequently violates API specifications in exceptional
situations.” Furthermore, it violates the specifications becase it is hard to write correct
exception handlers with current languages idioms, especially in the case of nested resources.
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The system tries to mine resource management specifications by looking for sequencing
rules of the form, (a→ b)∗. Where a and b must be methods operating on the same objects
and (a  b) must travel through a exception at least once. Additionally, the authors add
the constraint that there must be one exceptional path from a where there is no b. The
system then uses the Engler dataflow framework to compute the “belief” score whether an
object obeys the constraints. Finally, it uses a statistical ranking procedure to select the
objects with a highest likelihood of obeying the resource management specification.

Thummalapenta and Xie presented an alternative approach in [142] which addresses
some of the short comings of the Weimer system. The authors note that while the Weimer
system fails to mine rules correctly when the exception handling code must be different than
the nominal code. They present the case of a database query, consider the following Java
code

1 try {
2 conn = getConnection();
3 statement = conn.createStatement();
4 statement.executeUpdate("DELETE␣FROM␣table1␣where␣id␣=␣?", id);
5 conn.commit();
6 } catch (ConnectionError ce} {
7 log.Error("no␣connection␣bailing")
8 } catch (SQLException se} {
9 if (conn != null) {

10 conn.rollback();
11 }
12 } finally {
13 if (statement != null) { statement.close(); }
14 if (conn != null) { returnConnection(conn); }
15 }

In this complex block there are several cases which need to be handled correctly. The most
important one is when a ‘SQLException‘ occurs a rollback must be issued while in the
nominal case a commit should be issued. To fix this problem the authors mine sequence
association rules of the form:

c1  c2 . . . cn  a e1  e2 . . . em

where a is the of method call of interest, the cis are proceeding method calls, and the ejs
are method calls in the exceptional path.

To mine such complex rules the system uses frequent sub-sequence mining on generated
static traces. It first collects all the call sites of interest. If there is not enough data for
a particular method or object it uses, the now defunct, Google Code Search to find more
code which uses the library of interest. It then constructs the Control Flow Graph and the
Exception Flow Graph and generates static traces for both normal and exceptional paths.
The traces are filtered to remove unrelated noise to reduce noise. Finally closed frequent
sub-sequence mining is applied to find the patterns. This system has the advantage that
the general approach could be used with dynamic traces as well as the synthetic ones it
generates.

Finally, Buse and Weimer proposed a system to mine documentation instead of spec-
ifications in [20]. Instead of mining how to handle exceptions they mine what exceptions
can occur and what conditions can lead to there occurrence. For example the system can
generate documentation like

Exception NotFound raised when id is null or id.equals("")
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The system works by computing a call graph where each method is annotated with which
exceptions it can throw (transitively). The authors then employ a data-flow work list al-
gorithm to compute a predicate for each method exception pair. The predicate gives the
condition for when the exception will be thrown. The predicate is post processed and al-
gebraically simplified. Finally, they generate English like sentences using the predicate and
the exception type.
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Markov Chains

A.1 Absorbing Chains

This section follows Grinstead and Snell’s book [54] to explain the computation of absorp-
tion times. The theory absorbing Markov chains is not new and can be found (in several
presentations) in volumes 1 and 2 of Feller’s classic text on probability theory [44, 45]. Ke-
meny and Snell first presented the formulation used here in their 1960 book Finite Markov
Chains [80] (which was republished in 1976 by Springer). The Grinstead book follows the
Kemeny book with improved explanations.

A state si in a Markov chain (S,P) is called absorbing if it is impossible to leave it.
That is, Pi,i = 1 and for all j 6= i the Pi,j = 0. A Markov chain is absorbing if it has at
least 1 absorbing state and it is possible to go from every state to an absorbing state in
1 or more transitions. In an absorbing Markov chain states which are not absorbing are
called transient. Let the set of absorbing states be A and the set of transient states be T .
Absorbing Markov chains have a canonical form where the transition matrix P is arranged
such that the transient states come before the absorbing states:

P =

[ TR. ABS.

TR. Q R
ABS. 0 I

]
(A.1)

The probability (for any Markov chain not just absorbing) of moving from state si to

state sj in t steps is Pr
[
si

t−→ sj

]
= Pt

i,j . The notation Pt means the tth power of the

matrix P. This equation makes sense because if there is a row vector u which represents
a probability distribution over the states S it can be multiplied by P to produce a new
distribution after 1 step of the Markov process: u ·P = u′. Multiplying u′ by P again gives
another step in the process: u′ ·P = u′′. Which can be written as: u ·P ·P or u ·P2. Thus
taking t steps from an initial distribution u is: u ·Pt.

In the canonical form (Equation A.1) the sub-matrix Q contains the probability from
transitioning from a transient state to a transient state. Given transient states si and sj the
probability of going from state si to state sj in t steps is: Pt

i,j = Qt
i,j . For any transient state

si the total probability of arriving in a transient state after 1 step is: Qi,· =
∑
sj∈T Qi,j .

There must be at least one transient state si which reaches an absorbing state in 1 step.
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For such a state Qi,· < 0. Since there is one row of Q which does not sum to 1 as t → ∞
Qt → 0.

Using the fact that Qt → 0 as t → ∞ a special matrix, the fundamental matrix of
absorbing Markov chains, can be constructed. The fundamental matrix N is:

N = I + Q + Q2 + Q3 + ... (A.2)

The matrix N exists if the series I + Q1 + Q2 + ... converges. The series does converge
because Qt → 0.

Theorem A.1. Each entry Ni,j corresponds to the expected number of times the chain
visits transient state sj given that it started from transient state si.

Proof. Recall, a Markov process can be viewed as a sequence of random variablesX(0), X(1), ...
where

Pr
[
X(t+1) = y | X(0) = x0, X

(1) = x1, ..., X
(t) = x

]
= Pr

[
X(t+1) = y | X(t) = x

]
= Px,y

The probability of starting in si and ending in sj after t steps is:

Pr
[
si

t−→ sj

]
= Pt

i,j

= Pr
[
X(0) = si ∩X(t) = sj

]
Now following [54], the event (X(0) = si ∩ X(t) = sj) can be viewed as a binary random

variable Y
(t)
i,j which equals 1 when the event (X(0) = si ∩X(t) = sj) occurs and 0 otherwise.

The expected value of Y
(t)
i,j is:

E
[
Y

(t)
i,j

]
=

∑
x∈{0,1}

x · Pr
[
Y

(t)
i,j = x

]
= Pr

[
Y

(t)
i,j = 1

]
= Pt

i,j

The expected number of times the process is in sj on the when t = 1 step is therefore:

E
[
Y

(1)
i,j

]
= P1

i,j

This expectation makes sense because the Markov process can only be in one state at a time
and number of times the process can visit a state at a particular t is at most 1. Thus, the
expected number of times the process visits sj for t ≤ n is:

E
[
Y

(0)
i,j + Y

(1)
i,j + ...+ Y

(n)
i,j

]
= E

[
Y

(0)
i,j

]
+ E

[
Y

(1)
i,j

]
+ ...+ E

[
Y

(n)
i,j

]
= P0

i,j + P1
i,j + ...+ Pn

i,j

= Ii,j + P1
i,j + ...+ Pn

i,j
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Since both states si and sj are transient

Ii,j + P1
i,j + ...+ Pn

i,j = Ii,j + Q1
i,j + ...+ Qn

i,j

Letting n tend towards ∞ gives

E
[
Y

(0)
i,j + Y

(1)
i,j + Y

(2)
i,j + ...

]
= Ii,j + Q1

i,j + Q2
i,j + ...

= Ni,j

Thus, Ni,j is the expected number of visits to transient state sj for a process starting in
transient state si.

Theorem A.2. The matrix N can be computed by taking the inverse of (I−Q):

N = I + Q + Q2 + Q3 + ... = (I−Q)−1 (A.3)

Proof. Following [54], the inverse of I−Q exists:

Let (I−Q)x = 0

Ix−Qx = 0

x = Qx

Iterating on the last form gives:

xn = Qnxn

Since

lim
n→∞

Qn = 0

xn = 0

x = 0

By the invertible matrix theorem (I−Q)−1 exists since the equation (I−Q)x = 0 only has
the trivial solution x = 0. Now that we know (I−Q)−1 exists we must prove it converges
to N as defined Equation A.2. Begin by multiplying (I−Q) by N:

(I−Q)N = (I−Q)(I + Q + Q2 + Q3 + ...)

For the moment, bound the sequence by some finite n

(I−Q)(I + Q + Q2 + Q3 + ...+ Qn)

Expanding gives

I2 −Q + Q−Q2 + Q2 −Q3 + Q3 ...−Qn + Qn −Qn+1

Thus

(I−Q)(I + Q + Q2 + Q3 + ...+ Qn) = I−Qn+1
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Multiply both sides by N.

N(I−Q)(I + Q + Q2 + Q3 + ...+ Qn) = N(I−Qn+1)

(I−Q)−1(I−Q)(I + Q + Q2 + Q3 + ...+ Qn) = N(I−Qn+1)

I + Q + Q2 + Q3 + ...+ Qn = N(I−Qn+1)

Now let n approach ∞

I + Q + Q2 + Q3 + ... = N(I−Qn+1)

I + Q + Q2 + Q3 + ... = N(I− 0)

I + Q + Q2 + Q3 + ... = NI

I + Q + Q2 + Q3 + ... = N

N = I + Q + Q2 + Q3 + ...

Thus, N exists and is equal to the converged power series.

Theorem A.3. Let τi be the expected number of steps starting at state si before the Markov
process reaches an absorbing state

τi =
∑
sj∈T

Ni,j

Proof. Using the definitions from Theorem A.1:

τi =
∑
sj∈T

Ni,j

=
∑
sj∈T

E
[
Y

(0)
i,j + Y

(1)
i,j + Y

(2)
i,j + ...

]
=
∑
sj∈T

expected visits to sj for a process starting in si
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Debugging

B.1 Traditional Debugging

In Automatic Fault Localization the imagined scenario involves a programmer using a ranked
list of locations in a program to find the fault. The programmer checks each location and
then moves down to the next location. As noted this process bears little resemblance to a
debugging session a programmer would actually conduct. The traditional debugging process
which is taught and widely practiced is the Scientific Debugging Process.

Definition B.1 (Scientific Debugging Process).

1. Collect information about program failure (eg. from user reports or from running the
program).

2. Reproduce the failure.

(a) Form a hypothesis for what is causing failure.

(b) Create a test or program input from the hypothesis.

(c) Run the test and observe the program’s behavior.

(d) If the program did not fail, go back to step 2.(a).

3. Form a hypothesis for why the program failed. Hypothesis formation may involve
running the program, inspecting the code, or other activities.

4. (optional) Construct an experiment using a debugging tool (printf, a debugger such as
gdb, or a graphical tool such as Visual Studio or IntelliJ) to test your failure hypothesis.

5. (optional) If the hypothesis was rejected go back to step 3.

6. Construct a fix based on the hypothesis.

7. Run the fixed program and attempt to cause it fail.

8. If the fixed program failed go back to step 1 (potentially reverting the fix).

9. Congratulations the fault has been located and fixed.
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1 func (n *Node) balance() *Node {
2 if n == nil {
3 return nil
4 }
5 if abs(n.left.Height() - n.right.Height()) < maxSep {
6 return n
7 } else if n.left.Height() < n.right.Height() {
8 return n.rotateLeft()
9 } else {

10 return n.rotateRight()
11 }
12 }
13
14 func (n *Node) rotateRight() *Node {
15 if n == nil {
16 return nil
17 } else if n.left == nil {
18 return n
19 }
20 r := n.left.rightmostDescendent()
21 ++ n.left = n.left.Remove(r.Key)
22 return n.doRotate(r)
23 }
24
25 func (n *Node) rotateLeft() *Node {
26 if n == nil {
27 return nil
28 } else if n.right == nil {
29 return n
30 }
31 r := n.right.leftmostDescendent()
32 ++ n.right = n.right.Remove(r.Key)
33 return n.doRotate(r)
34 }
35
36 func (n *Node) doRotate(r *Node) *Node {
37 -- n = n.Remove(r.Key)
38 r.left = n.left
39 r.right = n.right
40 return r.Put(n.Key, n.Value)
41 }
42
43 func (n *Node) rightmostDescendent() *Node {
44 if n == nil {
45 return nil
46 } else if n.right == nil {
47 return n
48 } else {
49 return n.right.rightmostDescendent()
50 }
51 }
52
53 func (n *Node) leftmostDescendent() *Node {
54 if n == nil {
55 return nil
56 } else if n.left == nil {
57 return n
58 } else {
59 return n.left.leftmostDescendent()
60 }
61 }

Listing B.1: This diff shows the change required to fix a buggy AVL tree implementation. The buggy
statement is was on line 37. Calling the Remove function on the root of the subtree could (under the right
circumstances) cause another rebalancing operation to occur during a rebalance operation. This (under the
right circumstances) would cause the wrong key to be rotated putting violating the ordering property of a
binary search tree.
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(a) An AVL Tree before node 111 is removed.
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(b) An AVL Tree after node 111 is removed. Nodes
90 and 91 are out of position violating the ordering
property of a binary search tree.

Figure B.1: AVL Trees demonstrating the bug in Listing B.1.

In scientific debugging the fault is not truly “localized” until a fix can be constructed for
the fault. The fix explains the fault and may not be in just one location. Automatic Fault
Localization could help the programmer by assisting in “Hypothesis Formation” in Step 3.
A good localizer would help the programmer form a good hypothesis quickly.

Listing B.1 shows a bug in an AVL tree which is very difficult to find with known
CBSFL techniques. All CBSFL metrics tried on this bug produced equal rankings of all of
statements in the AVL tree. Why would all of the statements be ranked the same? Because,
the bug in the tree only manifests when the tree is rebalanced with a subtree in a certain
(and unusual configuration). This means, there are plenty of both passing and failing tests
which cover of all statements in the program.

The hypothesis which needs to be formed in order to debug the program is the fault
gets triggered during a rebalance of the tree. The exact situation is illustrated in Figure
B.1. In the figure, when the node 111 gets removed a local rebalance at node 112 occurs.
This causes the right subtree of the root node (100) to become out of balance with the left
subtree. A rebalance occurs to move node 100 into the right subtree and replace it with
node 91. However, to remove node 91 a call to node 100’s Remove method is made on line 37
in Listing B.1. This causes another rebalance to occur which moves node 100 and replaces
it with node 90. Thus, when the original rebalance finishes node 90 is now the root node.
Node 90 is moved into the right subtree and node 91 becomes the root. The rebalance is
now finished but nodes 90 and 91 are out of binary search tree order.

CBSFL techniques cannot localize the bug in Listing B.1. The information needed to
localize the fault is not in the coverage profile. For a statistical technique to detect a
difference between executions of the faulty AVL tree which exhibit failure and those which
do not more information is needed. The information collected would need to include some
information about the structure of the memory when the balance method is invoked. For
instance, if a call tree was collected the tree would need to include the identity of the
receiver for the balance method. Without collecting the information that balance is invoked
on a node while a balance was already occurring for the node a statistical fault localizer
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would be unable to detect any difference in behavior between failing and passing tests.
Automatic localization of bugs like the one in Listing B.1 is a aspirational goal. The

bug demonstrates that the most advanced techniques available today (including the ones
outlined in this chapter) can be tripped up by “simple” 1 line bugs. Meanwhile, the scientific
debugging process is general and can (with time) help a programmer find and fix any bug.
The ambition for all debugging tools should be to augment the programmer during their
own personal debugging process not to replace the process with an artificial one.
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