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ABSTRACT

We present GRAPLE, a method to generate a representative
sample of recurring (frequent) subgraphs of any directed la-
beled graph(s). GRAPLE is based on frequent subgraph min-
ing, absorbing Markov chains, and Horvitz-Thompson esti-
mation. It can be used to sample any kind of graph repre-
sentation for programs. One of many software engineering
applications for finding recurring subgraphs is detecting du-
plicated code (code clones) from representations such as pro-
gram dependence graphs (PDGs) and abstract syntax trees.
To assess the usefulness of clones detected from PDGs, we
conducted a case study on a 73 KLOC commercial Android
application developed over 5 years. Nine of the application’s
developers participated. To our knowledge, it is the first
study to have professional developers examine code clones
detected from PDGs. We describe a new PDG generation
tool jpdg for JVM languages, which was used to generate
the dependence graphs used in the study.

CCS Concepts

•Mathematics of computing → Markov processes;
Graph enumeration; •Social and professional topics →
Software management; •Software and its engineering →
Software maintenance tools; Designing software;

Keywords

frequent subgraph mining, program dependence graphs, sam-
pling estimation, clone detection, bug mining, Markov chains

1. INTRODUCTION
Code clones are similar fragments of program code [35].

They can arise from copying and pasting, using certain de-
sign patterns or certain APIs, or adhering to coding con-
ventions, among other causes. Code clones create mainte-
nance hazards, because they often require subtle context-
dependent adaptation and because other changes must be
applied to each member of a clone class. To manage clone

evolution the clones must first be found. Clones can be de-
tected using any program representation: source code text,
tokens, abstract syntax trees (ASTs), flow graphs, depen-
dence graphs, etc. Each representation has advantages and
disadvantages for clone detection.

PDG-based clone detection finds dependence clones corre-
sponding to recurring subgraphs of a program dependence
graph (PDG) [22, 23]. Since PDGs are oblivious to seman-
tics preserving statement reorderings they are well suited to
detect semantic (functionally equivalent) clones. A num-
ber of algorithms find clones from PDGs [22, 23, 25, 5, 11,
29, 30, 19, 33]. However, as Bellon [3] notes, “PDG based
techniques are computationally expensive and often report
non-contiguous clones that may not be perceived as clones
by a human evaluator.” Most PDG-based clone detection
tools are biased, detecting certain clones but not others.

The root cause of scalability problems with PDG-based
clone detection is the number of dependence clones. Sec-
tion 3 illustrates this with an example in which we used an
unbiased frequent subgraph mining algorithm [24] to detect
all dependence clones in Java programs. In programs with
about 70 KLOC it detected around 10 million clones before
disk space was exhausted. Processing all dependence clones
is impractical even for modestly sized programs.

Instead of exhaustively enumerating all dependence clones,
an unbiased random sample can be used to statistically es-
timate parameters of the whole “population” of clones, such
as the prevalence of clones exhibiting properties of inter-
est. For these reasons, we developed a statistically unbiased
method for sampling dependence clones and for estimating
parameters of the whole clone population.

We present GRAPLE (GRAph samPLE)1, a method to gen-
erate a representative sample of recurring subgraphs of any
directed labeled graph(s). It can be used to sample sub-
graphs from any kind of program graph representation. GRAPLE
is not a general purpose clone detector but it can answer
questions about dependence clones that other PDG-based
clone detection tools cannot. We conducted a preliminary
case study on a commercial application and had its devel-
opers evaluate whether the sampled subgraphs represented
code duplication. To our knowledge, it is the first study to
have professional programmers examine dependence clones.

Contributions:

1. GRAPLE: a framework for unbiased sampling of frequent
subgraphs of large graphs such as PDGs and for esti-

1https://github.com/timtadh/graple
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1 public class Fib {

2 public int fib(int x) {

3 int prev = 0;

4 int cur = 1;

5 if (x == 0) {
6 cur = 0;
7 } else {

8 for (int i = 1; i < x; i++) {

9 int next = prev + cur;
10 prev = cur;
11 cur = next;
12 }
13 }
14 return cur;
15 }
16 }

(a) Program to compute terms from
the Fibonacci sequence.
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(b) Procedure dependence graph of Figure 1a.

Figure 1: Example procedure and procedure dependence graph. Solid lines are data dependencies. Dashed
lines are control dependencies. The labels on the data dependencies indicate the type of the data and its
usage context (ie. its parameter number). The data dependencies are also annotated with variable names to
aid in readability. c©Tim Henderson

mating statistics characterizing the whole population
of frequent subgraphs. (Sec. 3.3, 3.5)

2. A case study in which GRAPLE was applied to a com-
mercial Android application and in which its output
was examined by developers. (Sec. 4)

3. jpdg: a new procedure dependence graph generator for
JVM languages. (Sec. 2)

GRAPLE has applications in bug mining, test case selection,
and bioinformatics. The sampling algorithm also applies to
frequent item sets, subsequences, and subtrees allowing code
clone sampling from tokens and ASTs.

2. A REVIEW OF DEPENDENCE GRAPHS
A program dependence graph (PDG) [10] represents pos-

sible dependence relationships between statements in a pro-
gram, with vertices representing statements and directed
edges representing control and data dependences. Infor-
mally, a statement s1 is control dependent on a statement
s2 if s2 is a branch predicate that controls the execution of
s1. A statement s1 is data dependent on a statement s2 if
a value assigned to a variable x at s2 can later be accessed
from x at s1. (This requires that all control flow paths from
s2 to s1 do not assign a new value to x.)
PDGs approximate semantic dependencies between state-

ments. They are not affected by reordering statements in
ways which preserve the semantics. Horwitz et al.[16] showed
that, under certain assumptions, if the PDGs of two pro-
grams are isomorphic then the programs are equivalent. Giv-
en Horwitz’s result and related results from Podgurski [31,
32], the PDG is a good representation to detect code clones
with renamed variables, semantics-preserving statement re-
orderings, and unrelated code insertions.

An important variant of the program dependence graph is
the system dependence graph (SDG) [17], which consists of
procedure dependence graphs (pDGs), each representing an
individual subprogram, connected by inter-procedural depen-
dence edges representing subprogram calls. The case study
described in Section 4 involves mining pDGs. Figure 1 shows
an example procedure dependence graph. The dotted lines
indicate control dependencies and the solid lines indicate

data dependencies.
To compute the pDGs used in this paper a prototype tool

named jpdg was built. A successor to JavaPDG [38], jpdg

was created to improve the PDG representation for code
mining purposes. For instance, most dependence graphs
place the arguments to operations in the vertices of the
graph. In the graphs produced by jpdg these are associ-
ated with the edges (see Figure 1). jpdg is built on top
of the Soot optimization framework [12]2, and non-constant
vertices map to Jimple instructions. Control dependencies
are computed using Cytron’s method [8]. Data dependences
are computed using Upward Exposed Uses analysis [26].

3. SAMPLING DEPENDENCE CLONES
A dependence clone is duplicated code detected from the

program dependence graph (PDG). To detect dependence
clones, identify subgraphs appearing in multiple locations
in the PDG. The problem of finding recurring subgraphs
is called Frequent Subgraph Mining (FSGM) [7]. Frequent
subgraph miners search for subgraphs which recur k times
with k > 1.
Applying standard mining algorithms to program graphs

is not straightforward. Software engineers are potentially
interested in subgraphs with very few repetitions. Small
frequency thresholds are uncommon in the applications typ-
ically considered in the data-mining literature. Our experi-
ments on jgit

3 (∼ 72 KLOC) have found that with a mini-
mum frequency setting of 5, there are over 11.8 million fre-
quent subgraphs. We were unable to completely mine jgit

as we exhausted our disk space storing the patterns (∼ 1
TB). This mining attempt, which used the vSiGraM algo-
rithm [24], took over 12 days. We made another attempt
where the patterns were simply logged to the console instead
of stored. During this attempt, over 350 million patterns
were discovered before the process was killed after 10 days.
The application considered in Section 4 had similar results
(> 10 million frequent patterns before disk space exhaustion
and >400 million patterns after 10 days of mining).

2http://sable.github.io/soot/
3https://github.com/eclipse/jgit
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So, not only is it impractical in time and space to use an
algorithm like vSiGraM to do code clone detection it would
not be possible for all patterns to be stored and individually
examined.

3.1 How Frequent Subgraph Mining Works
Standard frequent subgraph miners search for subgraphs

that recur at least a specified number of times in a graph
database, which may contain one very large graph or many
smaller graphs [7]. Conceptually, miners work by enumerat-
ing the subgraphs of the graphs in the database by traversing
frequent connected subgraph lattice (see Fig. 2b). As each
subgraph is found its support must be computed. Informally,
the support of a subgraph is the number of embeddings that
it has in the graph database. There are a few complications
to this definition which will be explained in Section 3.4.

Using subgraph-isomorphism checks to count support is
expensive. A faster way to count support is to store the
embeddings of each subgraph. The stored embeddings can
also be used during the subgraph enumeration process to re-
duce the number of candidate patterns. As each subgraph is
produced it is “canonicalized.” The canonicalization process
always puts isomorphic graphs into the same form and thus
neatly solves the graph isomorphism problem. We use Bliss
[21] for canonicalization.

3.2 From Mining to Sampling
Large PDGs may have a huge number of frequent sub-

graphs, but in applications of clone detection it may be un-
necessary to consider them all. We focus on two use-cases:
(1) developers want to manually examine mined clones, e.g.,
to propose refactorings, and (2) developers and research-
ers want to answer questions about the whole population of
clones that could be mined given enough time and storage
space.

In the first use-case, developers will have limited time to
examine mined clones. Thus, they will generally prefer to
consider a small, diverse set of clones. In the second use-
case, the questions posed could be either objective (e.g.,
“What percentage of our code base is covered by one or
more frequent subgraphs?”) or subjective (e.g., “What pro-
portion of potential dependence clones do our programmers
want to refactor?”). Both kinds of questions can often by
answered by examining a representative sample of frequent
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Figure 2: Figure 2b is a connected subgraph lattice
of Figure 2a including only subgraphs with 2 or more
embeddings in Figure 2a. The boxed nodes in the
graph show the embeddings of the boxed subgraph
in the lattice. (See Section 3.4) c©Tim Henderson

1 # param G : the graph being mined
2 # param bottom : lattice node for the empty subgraph
3 # param min_support : int, minimum number of embeddings
4 # returns : leaf node of the frequent connected subgraph
5 # lattice which is a maximal frequent subgraph
6 def walk(G, bottom, min_support):
7 v = u = bottom
8 while v is not None:
9 u = v

10 v = rand_select(get_children(G, u, min_support))
11 return u
12

13 # param u : a lattice node
14 # returns : a list of lattice nodes which are 1 edge
15 # extensions of u
16 def get_children(G, u, min_support):
17 exts = list()
18 for emb in u.embeddings:
19 for a in embedding.V:
20 for e in G.edges_to_and_from(a):
21 if not emb.has_edge(e):
22 exts.append(emb.extend_with_edge(e))
23 groups = group_isomorphs(exts)
24 return [ LatticeNode(lbl, group)
25 for lbl, group in groups.iteritems()
26 if len(group) >= min_support ]
27

28 # param subgraphs : a list of subgraphs of G
29 # returns : map label -> list of isomorphic subgraphs.
30 def group_isomorphs(subgraphs):
31 isomorphs = dict()
32 for sg in subgraphs:
33 label = bliss.canonical_label(sg)
34 if label not in isomorphs:
35 isomorphs[label] = list()
36 isomorphs[label].append(sg)
37 return { label: minimum_image_supported(group)
38 for label, group in isomorphs.iteritems() }

Listing 1: GRAPLE’s sampling procedure

subgraphs. If care is taken in designing the method to se-
lect the sample, then statistical estimation [39] techniques
can be used to estimate unbiased answers.

We developed GRAPLE to address both use-cases. It samples
randomly from the space of maximal frequent subgraphs (a
frequent subgraph is maximal if no larger frequent subgraph
can be constructed from it). The sampling procedure is well
defined and allows us to compute selection probabilities for
subgraphs, which can be used in statistical estimators such
as the Horvitz-Thompson (HT) unequal probability estima-
tor [39]. Furthermore, developers can use GRAPLE to collect
small, diverse sets of potential dependence clones from an
entire code base or from parts of interest. The same basic
algorithm can also be applied to item-set, sub-sequence, and
sub-tree mining.

3.3 Sampling Maximal Frequent Subgraphs
All frequent pattern miners traverse the frequent pattern

lattice, which for subgraph miners means the frequent con-
nected subgraph lattice (see Figure 2). Each node in the lat-
tice represents a frequent subgraph, with the directed edges
connecting A to B if adding one edge to A produces a graph
isomorphic to B (see Section 3.4). Miners traverse the lat-
tice in either a breadth first or depth first manner to find all
of the frequent subgraphs.

Since we seek a random sample of the maximal frequent
subgraphs, it is unnecessary to traverse the whole lattice.
Instead, we make n partial traversals where n is the desired
sample size. Each traversal is an unweighted random walk
over the lattice, which proceeds from smaller frequent sub-
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graphs to larger ones. The walk terminates when it reaches a
maximal frequent subgraph and that pattern and its embed-
dings are added to the sample. This procedure is outlined
in Listing 1.

The most expensive part of frequent subgraph mining is
extending a pattern with e edges to patterns with e+1 edges
and computing support of each of those extensions. Exten-
sions are computed on lines 17-22 by considering all possi-
ble extensions for each embedding. The lattice nodes hold a
list of their embeddings, making this computation relatively
cheap. After all possible extensions are computed they are
grouped by their canonical labeling (lines 30-36) as com-
puted by Bliss [21]. The groups are then minimized (lines
37-38) to remove many of the overlapping embeddings us-
ing minimum image support [4]. If a group contains enough
embeddings to be considered frequent then a lattice node is
created and it is returned as a child (lines 24-26).

Generalizing results from the sample of maximal frequent
patterns to the population of all maximal frequent pattern
requires taking into account unequal sample inclusion prob-
abilities. In order to do this a correction factor or weight is
applied to each sampled value. The weight for the value yi
of the ith population unit is the inverse of the unit’s proba-
bility πi of inclusion in the sample. With these weights, the
Horvitz-Thompson (HT) estimator [15], denoted τ̂π, can be
used to make an unbiased estimate of the population total τ
for the study variable, and a simple variant µ̂π can be used
to unbiasedly estimate the population mean µ. Let ν be the
number of distinct units in the sample. Then

τ̂π =

ν
∑

i=1

yi

πi

(1)

Observe that units that are rarely sampled will have their
values boosted substantially by the weights 1/πi, while units
which are commonly sampled have their values boosted less.
Thompson [15] provides formulas for the HT estimator’s
mean and variance and for computing confidence intervals
for estimates.

When sampling n units with replacement, the probability
πi that the ith population unit is included in the sample can
be computed from the probability pi that unit i is selected
on a particular random walk:

πi = 1− (1− pi)
n (2)

3.4 Formal Definitions
Before describing how to compute the selection probabil-

ities (the pi’s above) a few definitions are needed.
A directed labeled graph (labeled digraph) G is a set of

vertices V , a set of edges E = V ×V , and a labeling function
which maps vertices (or edges) to labels l : V |E → L. E can
be represented by a matrix E. Ei,j = 1 if and only if there
is an edge from vertex vi to vertex vj , otherwise it is 0.

H is a subgraph of G (H ⊑ G), if and only if an injective
mapping m : VH → VG exists such that:

1. All vertices inH map vertices inG with the same label:
∀ v ∈ VH [lH(v) = lG(m(v))]

2. All edges in H are in G:
∀ (u, v) ∈ EH [(m(u),m(v)) ∈ EG]

3. All edge labels match:
∀ (u, v) ∈ EH [lH(u, v) = lG(m(u),m(v))]

Such a mapping m is known as an embedding. A digraph A
is isomorphic to another digraph B, A ∼= B, if A ⊑ B and

B ⊑ A. The isomorphism class of a subgraph H is the set
of all of the subgraphs of G isomorphic to H with distinct
mappings, denoted JHK = {H ′ ⊑ G : H ′ ∼= H∧mH′ 6= mH}.
The subgraph relation · ⊑ · induces a connected subgraph

lattice LG representing all possible ways of constructing G.
LG can itself be viewed as a directed graph where each vertex
u represents a unique connected4 subgraph of G. An edge
exists between u and v if adding one edge to u creates a
subgraph u + ǫ which is isomorphic to v, v ∼= u + ǫ. A k-
frequent connected subgraph lattice k-LG contains only those
subgraphs which have at least k embeddings in G, see Figure
2. Finally, a pattern refers to the isomorphism class JHK of
a subgraph H.

One definition of the support, or frequency, of a pattern
JHK in G is the number |JHK| of unique embeddings it has
in G. However, many graphs have automorphisms, which
occurs when a graph is isomorphic to itself, and each au-
tomorphism results in a unique embedding. Including au-
tomorphisms in support overstates the true frequency of
many graphs. A tractable solution is minimum image sup-
port (MIS) [4], which is an upper bound on the size of the
maximum independent set of non-overlapping embeddings.
MIS is found by computing the unique embeddings for each
vertex individually. The vertex with the fewest unique em-
beddings determines the support of the pattern.

3.5 Computing the Probability of Selecting a
Maximal Subgraph

In order to use the HT estimator outlined in the previ-
ous section, it is necessary to determine the probability pi
that the ith maximal frequent pattern JHiK is selected on a
random walk of the k-frequent connected subgraph lattice
(k-LG). We compute these probabilities using the theory of
Markov chains.

A finite-state Markov chain [13] consists of a finite set of
states, S = {s1, . . . , sn}, and a matrix P, called the tran-
sition matrix, where Pi,j gives the probability of a state
transition from si to sj . A Markov chain moves from state
to state according to the probabilities in the transition ma-
trix. A random walk in a graph G can be viewed as a Markov
chain whose set of states S corresponds to the vertex set VG.
An absorbing Markov chain [13] is a special type of Markov
chain which always ends in a state that cannot be exited,
called an absorbing state.

To construct an absorbing Markov chain from the lattice
k-LG, let the states of the chain be the vertices of the lat-
tice (i.e., the frequent patterns JHiK). To model how the
algorithm in Listing 1 transitions from one lattice node to
the next by uniformly selecting a neighboring node, let the
transition probability for an edge vi → vj be the reciprocal
of the out-degree of vi:

Pi,j =







1∑
k Ei,k

if Ei,j = 1

1 if i = j ∧ vi is maximal
0 otherwise

(3)

The selection probability pi of JHiK is the probability that
state si absorbs the Markov process starting at the bottom
lattice node. To compute pi, arrange the transition matrix
P into canonical form such that the transient states come

4In this paper, connected ignores edge direction (see Fig. 2).
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before the absorbing states:

P =

[

TR. ABS.

TR. Q R
ABS. 0 I

]

(4)

Qi,j is the probability of transitioning from a transient state
si to transient state sj . Ri,j is the probability of transition-
ing from transient state si to absorbing state st+j where t
is the number of transient states. I is the identity matrix
and 0 is the zero matrix, as once a Markov process enters an
absorbing state it never leaves. The probability of a process
starting at the bottom of the lattice s0 and being absorbed

by state si with zero or more transitions (
⋆
−→) is [13]:

pi = Pr[s0
⋆
−→ si] = (P∞)0,i = ((I−Q)−1R)0,(i−t) (5)

3.5.1 Computing pi with a submatrix of P

To compute pi using Equation 5, the entire matrixP needs
to be constructed. It turns out only a submatrix of P is
needed to compute the probability pi of selecting a frequent
pattern JHiK using the algorithm in Listing 1. The required
rows and columns of P correspond to the vertices of k-LG

which are subgraphs of Hi.

Theorem 1. Let JHiK be a maximal k-frequent pattern
sampled from k-LG. Let si be the corresponding state in the
Markov chain formed from k-LG. The selection probability
of JHiK, pi = ((I−Q)−1R)0,(i−t), can be computed from the
submatrix of P that includes only the rows and columns that
correspond to subgraphs of Hi.

Proof. See supplementary materials5

Computing the submatrix of P for Hi requires finding ev-
ery connected subgraph of Hi which is much less work than
mining all frequent subgraphs of G. Unfortunately, com-
puting the submatrix is only tractable for subgraphs with
fewer than 20 edges (which can induce submatrices as large
as 220×220). In future work, we intend to estimate pi rather
than compute it exactly, in order to handle much larger sub-
graphs. Note that our sampling procedure does not have a
size limitation (it has found frequent subgraphs with over
100 edges); only the probability computation has this limi-
tation.

4. CASE STUDY: ASSESSMENT OF CLONE

RELEVANCE
We conducted a preliminary case study to see if GRAPLE

could help us assess the usefulness of PDG-based code clone
detection to developers. Our study assessed the relevance
of dependence clones in a commercial Android application
with ∼ 73 KLOC that had been under continuous develop-
ment for 5 years. Nine developers participated in the study.
The study was conducted as a survey which asked a set of 10
questions about each group of mined clones (two questions
are in Figure 3). The clones were displayed as both graphs
and highlighted regions of source code. The goal was to es-
timate the proportions of frequent subgraphs that represent
duplicate code and that developers would act upon.

The survey involved 104 dependence clone groups sampled
using GRAPLE, which was configured to require frequent sub-
graphs to have minimum support 5 and to contain at least 8
5http://hackthology.com/pdfs/swan-2016-
supplemental.pdf

vertices. As sampling was done with replacement, 415 pat-
terns were sampled, with 122 unique patterns. Of the 122,
104 with fewer than 20 edges were retained as discussed in
Section 3.5.1. The sampling was done on an computer with
an 8 core Intel Xeon processor, 64 GB of main memory and a
250 GB hard drive. It took 138 seconds to collect the sam-
ples and 23.2 hours to compute the selection probabilities
used in the HT estimator. Computing the selection prob-
abilities was made possible by using SuiteSparse6 for large
sparse matrix inversion.

At the beginning of the study, the participants were given
a presentation on code clones. Code clones were somewhat
familiar to these developers, as they utilize a commercial
static analysis tool, SonarQube, which makes use of a clone
detector based on Hummel et al.’s algorithm [18]. Sonar-
Qube detected none of the clones the developers reviewed
in the study. In an ideal study each clone group would have
been reviewed by each participant, but in order to maximize
the number of clones reviewed, each clone group was only
reviewed by a single participant.

4.1 Study Results
All of the 104 clone groups were reviewed by the par-

ticipating developers. Despite the approximately unbiased
nature of the modified Horvitz-Thompson (HT) estimator
we used [36], its results can still be skewed if there is high
variance in the inclusion probabilities. The best way to ad-
dress such skew is to collect more data. As this was not
possible the next best option of removing the outliers was
taken. Thus two of the clone groups with outlying selection
probabilities were discarded.

For survey question 1, the estimate of the proportion of
all mineable dependence clones for which the answer would
be Yes if they were all examined was 61%, with a 95%
confidence interval of 42%−78%. For survey question 2, the
estimate of the proportion of all mineable clones for which
one of the “action answers” (2.a, 2.b, 2.c, and 2.e) would
be given if all of the clones were examined was 14% (which
is smaller than the sample proportion of 33%), with a 95%
confidence interval of 0%− 33%.

It should be emphasized that the results for survey ques-
tion 1 do not actually mean that our frequent subgraph
miner produced erroneous results 39% of time. It did in
fact identify only 5-frequent PDG subgraphs. However, the

6http://faculty.cse.tamu.edu/davis/suitesparse.html.
See Davis’ 2004 paper for details [9].

1. Do the highlighted portions of the code fragments, in con-
junction with the associated graph, represent duplicated,
similar or cloned code?
(a) Yes
(b) No

2. If you answered Yes to question 1, would you:
(a) Create a story card to refactor this code?
(b) Add a comment to consider refactoring on next

change?
(c) Add a note about duplicate code even if it cannot be

refactored?
(d) Ignore it?
(e) Take some other action?

Figure 3: The two critical survey questions
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a code clone by the reviewer.

Figure 4: Two clones discovered in the study. Application details have been obfuscated. c©Tim Henderson

developers had their own subjective criteria for deciding
whether the corresponding code was duplicated. For exam-
ple, Figure 4 shows two simplified clones sampled from the
application. Figure 4a was identified by the developer who
reviewed it as the double-checked locking pattern [37]. Al-
though widely used throughout the code base, the reviewer
indicated that it was too general to be a code clone, because
each instance exhibited context-specific specialization. Fig-
ure 4b represents a class of different clones involving user-
interface state modifications. In this clone, the color of a
button is changed based on the current theme. As all el-
ements of the application are themed to support multiple
brands of the program, this code was duplicated in many
locations (often non-contiguously). The reviewers recom-
mended it for refactoring to centralize the theming decision.

Thus, the results for survey questions indicate that (a)
about 61% of mineable dependence clones in the project
would be judged by developers to be duplicate code and
(b) the developers would want to take action for only about
14% of mineable clones. Assuming that the developers’ judg-
ments about the clones were justified, the difference between
these two estimates suggests that for this project, additional
filtering is needed to eliminate clones that are not of inter-
est to developers. Further study of the sampled dependence
clones and discussions with the developers about them might
suggest what filtering criteria are needed. Note that in de-
velopers’ responses to a followup questionnaire in our study,
they indicated that they felt the exercise was useful and that
they would like to periodically review new findings from a
PDG-based tool.

Further investigations are needed to fully understand these
results in the context of other clone detection techniques.
Unlike many detectors ours did not employ any filtering or
normalization heuristics, making direct comparisons to pre-
vious results difficult. In future studies, GRAPLE could be
applied to AST and token representations, allowing a direct
comparison. The effect of filtering and normalization can
also be estimated using GRAPLE.

5. RELATED WORK
Code clone detection and management have been rich ar-

eas of research and there are several recent surveys avail-
able [3, 34, 33, 35]. Krinke’s Duplix algorithm [23] and
Komondoor and Horwitz’s algorithm [22] are early exam-
ples of detecting code clones from PDGs. Gabel et al. [11]
introduced an alternate formulation by mapping PDG’s to
abstract syntax trees and detecting clones with DECKARD
[20]. Higo and Kusomoto extended Komondoor’s algorithm
to detect contiguous clones [14]. ModelCD from Pham et

al. [30] detect code clones in Matlab/Simulink models by
converting them to labeled directed graphs and finding code
clones with vSiGraM [24]. Nguyen et al. [28, 27] created
two code completion tools based on the code mining tool in
[29]. Both tools work by first building a graph database of
groums which are object/object interaction graphs.

Many algorithms have been developed for frequent sub-
graph mining [7]. Our technique aligns most directly with
approaches which have employed Markov Chain based sam-
pling strategies. Musk [1] constructs a Markov process which
samples the maximal subgraphs uniformly given enough time.
Al Hasan et al. proposed a Metropolis-Hastings approach [2]
to uniformly sample all frequent subgraphs (as opposed to
just the maximal subgraphs). Unfortunately, we have found
both the Metropolis-Hastings approach and Musk to be un-
workable on large program dependence graphs. ORIGAMI
[6] uses a random walk on the connected subgraph lattice
to collect a sample of the frequent maximal subgraphs in
a similar manner to GRAPLE. It then prunes the sample to
include only the most representative subgraphs. However
unlike GRAPLE, ORIGAMI does not provide a means of com-
puting sampling probabilities.

6. CONCLUSION
We have presented GRAPLE, a framework for randomly sam-

pling unique frequent subgraph from directed labeled graphs.
Our sampling method enables unbiased estimation of statis-
tics characterizing the whole population of frequent sub-
graphs (without enumerating it). The results of our case
study suggest that GRAPLE will prove useful to software engi-
neering researchers and to developers who apply advanced
analytical methods to better understand large code bases. In
future work, we plan to estimate the sample inclusion proba-
bilities needed for Horvitz-Thompson estimation rather than
computing them exactly to enable studies involving larger
patterns.
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