
JavaPDG: A New Platform for Program Dependence Analysis

Gang Shu, Boya Sun, Tim A.D. Henderson, Andy Podgurski
The Dept. of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, OH 44106

<gang.shu, boya.sun, tadh, podgurski>@case.edu

Abstract—Dependence analysis is a fundamental technique 
for program understanding and is widely used in software 
testing and debugging. However, there are a limited number 
of analysis tools available despite a wide range of research
work in this field. In this paper, we present JavaPDG1, a
static analyzer for Java bytecode, which is capable of 
producing various graphical representations such as the 
system dependence graph, procedure dependence graph, 
control flow graph and call graph. As a program-
dependence-graph based analyzer, JavaPDG performs both 
intra- and inter-procedural dependence analysis, and 
enables researchers to apply a wide range of program 
analysis techniques that rely on dependence analysis.
JavaPDG provides a graphical viewer to browse and analyze 
the various graphs and a convenient JSON based 
serialization format.

Keywords-program dependence graph; system dependence 
graph; procedure dependence graph; call graph; Java Virtual 
Machine; Java bytecode

I INTRODUCTION

Program dependence analysis is a fundamental 
technique for program understanding, and is widely used 
in software testing and debugging. A program element, x,
is said to be dependent on another one, y, if y controls the 
execution of x or influences the data utilized by x.
Techniques for dependence analysis can be categorized
into two types [1]: static analyses [2, 3] and dynamic 
analyses [4, 5]. Static dependences are computed by 
taking all the possible executions into consideration 
without actually executing the program; in contrast the 
computation of dynamic dependences relies on execution 
profiles for a given test suite. This work takes the static 
approach and does not incorporate any run-time 
information. Compared with the large number of 
publications on dependence analysis, there have been only 
a few implementations. Moreover, due to the nature of 
the problem most tools target particular languages (often 
C or related languages), and only few exist for object-
oriented languages like Java.  CodeSurfer [6, 7] is a 
typical static analysis tool from GrammaTech for C/C++.
Unlike some well-known frameworks such as Soot [8]
and Wala [9], which create intermediate representations 
from Java bytecode, JavaPDG analyzes Java bytecode
directly.

1 The JavaPDG tool and manual, as well as figures in this paper are 
publicly available at http://selserver.case.edu:8080/javapdg/.

(a) Example PDG

(b) Example SDG
Figure 1

As illustrated in the Figure 1(a), a PDG [10] is defined 
as a labeled, directed graph that maps out control
dependences (blue edges) and data dependences (green 
edges) between elements in a program. A system 
dependence graph (SDG) [11] is a generalization of PDG 
and contains one procedure dependence graph (pDG) for 
each method. In the Figure 1(b) for an example SDG,
two pDGs are linked together by inter-procedural control 
dependence edges (blue dashed lines) and data 
dependence edges (green dashed lines). A significant 
body of recent research applies PDG in combination with 
graph mining techniques such as frequent subgraph 
mining and subgraph matching in order to discover 
implicit programming rules and rule violations in 
software (e.g., [12-16]); to conduct change impact 
analysis for evolving software systems (e.g., [17, 18]);
and to detect semantically similar code from a code base 
(e.g., [19-21]). Empirical studies of the above research 
are currently limited to C/C++ programs because there is
a lack of PDG-based tools for other languages such as 
Java. The goal of this work is to fill a gap by facilitating 

The callee method: 

int  z = foo(int  x,  int y)

entry foo() 

x y z

In the caller method:

c = foo(a, b)

call foo() 

a b c 

Source Code:

If 
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test 

a b 

1:   a = m;

2:   if (!a)

3:   {

4:       b = test (a);

5:       n = a;

6:   }
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the adaptation of proposed dependence-based analysis 
techniques to Java bytecode programs.

We adopt and implement the approaches proposed by 
Zhao [22] on dependence analysis for Java bytecode.
JavaPDG implements static dependence analysis for 
Java Virtual Machine (JVM) bytecode. The tool parses 
the bytecode of a Java program, computes the SDG and 
related graphs, and stores the data for each program in a 
database. JavaPDG includes tools for visualizing the 
graphs it produces and for exporting the data in the JSON 
format. Additionally, users are able to query the output 
using SQL by utilizing Apache Derby [23].

The remainder of the paper is organized as follows.
Section II presents background on dependence analysis 
for Java bytecode. Section III gives the overview of 
JavaPDG and introduces analysis approaches behind.
Section IV gives a quick view of using JavaPDG. Section 
V introduces related work on (1) applying dependence 
analysis in software testing and debugging, (2) related 
Java bytecode analysis frameworks, and (3) various
modifications to the traditional SDG for representing Java 
source code. Finally, we summarize the features of the 
JavaPDG and propose future improvements in the Section 
VI. We give a demo description in the Appendix.

II BACKGROUND

In Java, source code is compiled to bytecode, a binary 
format that contains loading information and execution 
instructions for the JVM [24]. There are several other 
languages which also target the JVM such as: Scala [25]
and Clojure [26]. The JVM is a stack oriented virtual 
machine with a bytecode consisting of a mixture of high 
and low level instructions. The high level instructions 
deal with object manipulations such as getting, setting 
field members and invoking methods. The low level 
instructions do stack manipulations and basic arithmetic 
for a variety of data types.

A JVM instruction consists of a one-byte opcode that 
indicates a particular operation, followed by zero or more 
operands specifying the constants, references or local 
variables involved in the operations. Unlike human-
readable source code, bytecode encodes the result of 
parsing and semantic analysis on the source code, and 
they therefore allow much better performance than direct 
interpretation of source code.

Traditional dependence analysis has been employed to 
a range of languages, however Zhao [22] pointed out that 
the existing techniques cannot be applied to Java bytecode 
directly due to the specific features of JVM. Zhao also
gave guidance to analyze control flow in bytecodes [28],
and introduced primary types of intra-procedural 
dependences specific to Java bytecode [22].

Figure 2 shows an example SDG for Java bytecode.
This SDG is constructed from a Java class with two 
methods and hence consists of two pDGs. The left side 

shows source code statements compiled into Java
bytecode instructions. The right side shows pDG vertices 
(corresponding to JVM instructions) linked together by 
control-dependence edges (blue) and data-dependence 
edges (green). Intra-procedural dependences are shown 
as solid lines while inter-procedural dependences are 
shown as dashed lines.

III OVERVIEW OF JAVAPDG
Dependence analysis for Java bytecode introduces 

some challenges, mainly due to: (1) its complex 
branching instructions including unconditional branches,
simple conditional branches and compound conditional
branches; (2) its stack-based architecture, in which stack 
cells store intermediate calculations and may lead to 
implicit data flow between instructions; and (3) Java 
specific features, such as instance method invocation 
which implicitly passes the reference this into the callee
method, adding additional control and data dependence
edges.

A. Dependence Analysis
To address the above difficulties, JavaPDG evaluates 

and implements the primary types of dependences in a 
bytecode program identified by Zhao [22] for dependence 
analysis. We ignore some sources of control dependences
mentioned in Zhao’s work such as unconditional 
branching instructions goto, goto_w, jsr and jsr_w,
because they result in over-expansion of SDG produced.
Though these instructions can change the flow of control 
for the instruction execution, they are usually used with 
conditional branching instructions and hence were left out 
of consideration.

1) Intra-Procedural Control Dependences
Intra-procedural control dependences represent 

interactions due to conditional control flow between 
instructions inside a method. An instruction, x, is control 
dependent on another instruction, y, if y controls whether 
or not x is executed. For example all the instructions in 
the body of the if-statement (and else-statement) are 
control dependent on the branching instruction of the if-
statement. Thus, identifying control conditions that may 
affect the program execution is the first step.

In the JVM, a branching instruction can conditionally 
cause program execution to jump to an indicated 
instruction or continue to the next instruction. Such 
instructions include: (1) simple branching instructions: 
ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if_icmpeq, 
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge, 
if_acmpeq and if_acmpne, and (2) compound branching 
instructions: tableswitch and lookupswitch. Since these 
instructions can control which instructions the JVM 
executes, they are the direct source of control 
dependences.
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In addition to the explicit control dependences arising 
from branch instructions, method entries also control 
which set of instructions the machine executes. To 
facilitate inter-procedural dependence analysis and to 
collect caller and callee functions together, we create a 
special entry point for each method, and it controls all 
top-level instructions inside a method.

Another source of control dependences comes from 
call-sites, which manage the type and the number of 
parameters passed into and returned from a callee method.
Every call-site directly controls its actual-input 
parameters and actual-output parameter (if any). Many
programming patterns mined by Chang et al [12, 13]
involving call-sites indicate that the surrounding context
of call-sites is a highly probable spot to discover program 
defects.

Consider, for example, the function main() in Figure 
2.  Control dependence arises from branch instructions
(colored blackish green). The branching instruction #15 
if_icmplt (corresponding to the while-statement in the 
source code) pops the top two ints (say value1 and value2)
off the JVM stack and compares them. If value2 is 
greater than or equal to value1, execution continues at the 
next instruction #16; otherwise program execution jumps 
to instruction #5. As a result, instructions #7, 8, 11, 12,
13 and 14 are control dependent on instruction #15.

Control dependence may also arise due to call-site
instructions (colored orange). The instruction #7 calls 

add()  which has two actual-input parameters and one
return value, so instruction #7 controls instruction #5, 6
and its actual-out node. The call-site instruction #11
invokes the same function add() as instruction #5 does,
thus it similarly controls instructions #9 and 10 and an
actual-out node. The call-site instruction #18 is a little 
different because its callee method does not contain a
return value, so it merely controls its two actual-input 
parameters #16 and #17.

Control dependence also arises from the method
entry that controls every top-level instruction (without a
common control-dependent predecessor) inside a method.
In the example main() function, instructions #0, 1, 2, 3, 4,
15, 18, 19 and the formal input parameter are control 
dependent on the method-entry node.

2) Intra-Procedural Data Dependences
Intra-procedural data dependences identify the data 

flow between instructions within a single method. Using 
reaching definition and upward exposed uses analysis, 
use-to-definition chains can be constructed.[29] From 
there, the data dependence graph for the procedure is 
quite easy to produce. Unfortunately, the traditional 
definition-use chain does not work for implicit data-flow 
between instructions via the JVM stack. For example, 
instruction istore stores an integer from the stack to a 
local variable, while instruction iload retrieves an integer 
from a local variable. The two instructions can be data-
dependent on each other in two independent situations: (1) 

Figure 2 An example Java system dependence graph (right side) generated from Java bytecode (left side).
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iload is data dependent on istore if they refer to the same 
local variable, and its value read by iload was written by 
istore via the variable; (2) istore is data dependent on 
iload if they refer to the same stack cell, and its value read 
by istore was written by iload via JVM stack. The data 
flow between stack and local variable for each situation is 
shown in Figure 3.

Situation#1: iload is data dependent on istore via local variable

Instruction 
execution

istore <var#1>    store integer from stack to variable#1
iload < var#1>    retrieve integer from variable#1 to stack

Before After istore <var#1> After iload < var#1>
Stack Var#1 Stack Var#1 Stack Var#1
value - - value value -

Situation#2: istore is data dependent on iload via JVM stack

Instruction 
execution

iload < var#1>    retrieve integer from variable#1 to stack
istore <var#2>    store integer from stack to variable#2

Before After iload <var#1> After istore <
var#2>

Stack Var#1 Stack Var#1 Stack Var#2
- value value - - value

Figure 3 The data flow analysis between JVM stack cells and local 
variables in the two example situations.

In the JVM, as each new thread comes into existence, 
it gets its own program counter and JVM stack frame.
Method execution state is stored on the stack. Each stack 
frame contains local variables, method parameters, the 
return value (if any) and intermediate calculations. In 
order to track both data-dependence situations, JavaPDG 
monitors the data flow via an abstract variable regardless 
of local variables or JVM stack, and determines the 
define-set D and use-set U of each instruction in terms of 
the values it writes to and reads from the abstract variable,
respectively. Informally, we define two instructions as
data dependent if they might reference the same abstract 
variable and one of the references is an assignment to the 
variable.

Take function add() in Figure 2 for example. When 
the function is called, the JVM allocates a stack frame and 
pushes the values of method arguments on the top of the 
stack. The instruction #0 iload_0 retrieves the value of
the first argument a onto stack and this value is then 
transferred into instruction #2 iadd; the similar procedure
makes the value of the second argument b flow into the 
instruction #2 via the stack as well. iadd pops two ints 
from the stack, adds them, and pushes the int result back 
onto stack. This computational result is popped up and is 
finally returned by instruction #3 ireturn.

JavaPDG ignores the container where data is read 
from or written to but tracks the sender and receiver that 
uses the data; in the running example, the return value is
data dependent on ireturn and further dependent on iadd.

The instruction iadd is data dependent on both iload_0
and iload_1 which is transitively data dependent on input 
nodes node a and b, respectively.

3) Inter-Procedural Dependences
There are three types of dependences between 

methods [30]: 1) Method-call dependences that represent 
call relationships between a caller and the callee method; 
2) Parameter-in dependences that represent parameter 
passing between actual-input parameters and formal-input 
parameter; 3) Parameter-out dependences representing 
parameter passing between a formal-output parameter 
(return value) and actual-output parameters. Thus, in the 
SDG, pDGs are associated with the three types of inter-
procedural control and data dependence edges.

Refer again to Figure 2. The inter-procedural control-
dependence edges connect call-site instructions #7 and
#11 in the function main() to the entry vertex of the callee
function add(). And there are four inter-procedural data-
dependence edges starting from actual-input vertices in 
the caller and ending at their corresponding formal-input 
vertices in the callee; and two inter-procedural data-
dependence edges associated formal-output vertices with 
actual-output vertices.

Figure 4 The JavaPDG Framework

B. Framework
The analysis process takes as input the compiled class 

files of a Java program, and yields a SDG and related
graphs as the final output after performing the following
steps as indicated in Figure 4:

(1) Preprocessing: In the SDG, one pDG vertex 
represents each instruction. Artificial entry and exit 
vertices for every method are added to the graph to 
represent the start and end of the method, respectively. A
vertex is added for every call-site as its actual-output 
parameter if the callee method has any return value.
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(2) Control Flow Analysis: The bytecode of each 
method is transformed into a control flow graph (CFG).
This step makes the unstructured bytecode control flow 
explicit. The CFG is the basis for construction of a pDG.
Dependence analysis involves two steps: control-
dependence analysis and data-dependence analysis.
Conventionally, both are based upon the CFG.

(3) Control Dependence Analysis: A dominance tree
(DT) is computed for each CFG. Informally, control 
dependent nodes come after a decision and before a 
junction on a CFG. A DT characterizes the topological 
ordering in a flow-graph and is therefore used to identify 
control dependences on the CFG. Having CFG and DT, a 
control dependence graph (CDG) for every method is 
derived. In the CFG, if there is a path from vertex x to y
that doesn’t contain the immediate forward dominator of x,
y is control dependent on x.

(4) Data Dependence Analysis: A data dependence 
graph (DDG) for every method is calculated by tracking 
data flows on its CFG. A data flow is usually represented 
by a definition-use chain, i.e., one instruction assigns a 
value to an abstract variable and the other instruction uses 
the value. Reaching-definition and upward-exposed-uses 
analyses are conducted following the steps: 1) analyze the 
effect of each instruction in terms of its variable definition 
and use sets; 2) iteratively propagate the information over

the CFG; 3) during each iteration, inspect whether there is 
any unknown definer/assigner of the variable(s) used in 
each instruction, and update its information sets
accordingly; 4) once the information propagation ends (no 
changes are found), the data dependences between 
instructions is calculated by the definition-use chain
analysis.

(5) Inter-procedural Analysis: An SDG is a
collection of interconnected pDGs, each of which is 
composed of the CDG and DDG for a method. The static 
call graph of a program is used to investigate 
communications between methods. Based on the call 
graph, three types of inter-procedural control and data 
dependences are computed.

(6) The Output: The output SDG is a labeled, 
directed graph consisting of multiple pDGs. Besides the 
SDG, JavaPDG outputs some additional information,
including
� Static structure of a program that describes classes, 

fields, methods, and relationships among them.
� Variable information that contains the name, type and 

scope of every class field, object field and local 
variable (including formal input parameter).

� Control flow graphs and dominance trees that are 
constructed during dependence analysis and share the 
same vertices as in the SDG.

Figure 5 A Screenshot of JavaPDG Viewer

412



� A static call graph whose vertices correspond to Java 
methods and whose edges represent potential caller-
callee relationships indicated in the program.

IV USING JAVAPDG
For a Java program, JavaPDG automates dependence 

analysis from bytecode to SDG. JavaPDG maintains an 
embedded Apache Derby (or Java DB) database, which
stores the intermediate data and output. One database is 
created for a subject program. The results can be also 
exported to JSON format. JavaPDG thus enables 
researchers to extend and customize the produced SDG to 
meet their research-specific needs.

A graphical viewer is included in JavaPDG that allows 
users to browse the program dependence graphs (or call 
graph) and inspect the source code. In Figure 5, a
screenshot of the viewer is shown. The tool can display
not only pDG for single method but also its CFG, DT, 
CDG and DDG for separately reviewing. The static call 
graph for the whole program can be also visualized in the 
viewer. In Figure 5, the left side highlights a Java method 
in its source file and the right side shows pDG vertices 
associated by intra-procedural control-dependence edges
(blue) and data-dependence edges (green).

V RELATED WORK

A. PDG-based Research
PDG, because of its usefulness, has become the focus 

of recent research on software testing and debugging.
CodeSurfer, the commercial PDG-based analyzer,
supports most of the following studies on C/C++ 
programs. Chang et al [12, 13] showed how to use PDG 
as a general representation of programming rules. They 
then employed a frequent subgraph mining algorithm on 
SDG to find programming rules, and used a graph 
matching algorithm to find rule violations. Sun et al [14,
16] explored how to propagate bug fixes using fast 
subgraph matching on PDGs transformed from a subject 
program. In a further extension, Sun et al [15] presented 
an approach to discover and transform project-specific 
rules from PDGs into checkers for Klocwork, a 
commercial static analysis tool. Klocwork can then be 
utilized to find rule violations. Acharya and Robinson [17]
proposed a framework for change impact analysis using 
PDG-based slicing for large and evolving industrial 
software systems. Leitner et al [31] presented a test case 
minimization method based on static program slicing. It 
starts from the failure instruction, and proceeds
backwards by following data dependences to identify a 
minimized, subset of the code consisting only of those 
instructions that might affect the failure instruction.
Krinke [20] developed an approximation approach to 
identify similar code in programs by finding isomorphic 
subgraphs in PDGs. Nagy and Mancoridis [32] proposed 
an approach to locate faults that are related to security by 
conducting dataflow analysis on PDGs to identify parts of 
the source code that involve user input. Shu et al [33]
developed a technique to build a causal graph based on a 

program’s dynamic call graph and inter-method DDG for 
locating faulty methods in large and complex software 
using causal inference methodology. Baah et al [34]
showed how PDG can be used to construct a probabilistic
graphical model that captures the statistical dependences 
among program elements and enables the use of 
probabilistic reasoning to analyze program behaviors.

B. Dependence Analysis Framework for Java Bytecode
Soot [8] is a widely used optimization frameworks for 

the static analysis on Java bytecode, and provides four 
intermediate representations for analyzing and 
transforming Java bytecode. Soot has been evolving for 
more than a decade and it provides some useful APIs for 
program dependence analysis. However, one important 
feature that Soot has been lacking is the implementation 
of an inter-procedural program analysis framework.

Wala [9] is another well-known framework for static 
analysis on Java bytecode.  Wala extracts static single 
assignment (SSA) representation from Java bytecode and
is able to conduct iterative dataflow analysis, pointer 
analysis and call graph construction on it. A prototype 
SDG slicer has been provided in its recent versions.
However, its basic PDG vertex represents the SSA 
instruction rather than Java bytecode instruction as used 
in JavaPDG.

Indus [35] is a non-PDG based program slicer in 
which Java programs are represented in Jimple [36] via 
Soot. Instead of maintaining inter-procedural dependence 
edges in a SDG, the logic to handle them (including
unconditional jumps, procedure calls, etc.) is encoded in 
the Indus’s slicing algorithm.

C. Java System Dependence Graph
There have been a number of modifications proposed 

to traditional SDG for the representation of Java programs. 
However, Java is a growing language and grammar 
changes may affect the generality of grammar-dependent 
program slicers, therefore the following publications 
actually have not resulted in general tools. Kovács et al.’s 
approach [37] is able to represent some Java-specific 
features such as inheritance, packages, interfaces and 
polymorphic calls.  Zhao [30] used a group of dependence 
graphs to represent Java methods, classes, interfaces, 
programs, and packages, respectively.  Chambers et al. 
[38] proposed an approach that can accurately analyze
data dependences in Java programs on the occurrences of 
exceptions, synchronization and memory consistency.
Grove et al. [39] gave an approach to draw out call graph 
for object-oriented programs.  Liang and Harrold [40]
improved precision in inter-procedural slicing for Java 
programs by making the dependence analysis partially 
object-sensitive.  Walkinshaw et al. [41] combined and 
adapted the earlier approaches for multiple dependence 
representations, and provided a guidance for Java system 
dependence graph constructions. These methods provide a 
theoretical basis for dependence representations of Java 
programs.
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VI CONCLUSION

JavaPDG is a static analysis platform that constructs 
system dependence graph from Java bytecode. It aims at 
facilitating PDG-based research as there does not exist a 
SDG analysis tool directly built on Java bytecode. It 
stores intermediate data and graph-based output in a built-
in database. Its portable, project-specific database design
and user-friendly graphical viewer provides users with a
convenient way to explore the secrets behind the PDGs.

Future versions of JavaPDG will consider additional 
sources of dependences such as exceptions. When an 
exception is thrown, execution of the method terminates 
immediately and the control transfers to another location, 
possibly non-local to the method where the exception was 
thrown. Exceptions may be thrown explicitly or implicitly 
by instructions and introduce new dependences into the 
program.

Another area of future work is representation.
Currently, the resulting SDG has nodes which represent 
individual bytecode instructions. Similar graphs can be 
built at more abstract levels such as basic blocks allowing 
the analyst to get a better overview of the dependence 
structures in the application.
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APPENDIX: DEMO DESCRIPTION

The purpose of this demo is to show the main features 
of our static program dependence analysis tool JavaPDG.
We have implemented JavaPDG in Java, which can be 
run in standalone mode within Java Runtime Environment.  
The user interacts through the command-line interface of 
JavaPDG that has three main modules and we plan to run 
the demo by letting the audience go through each of them 
to experience the easiness and usefulness of the tool.  
Next we describe how we plan to run the demo.

A. Module#1: Program Dependence Analyzer
User can run the program dependence analyzer from 

the command line by setting the value 1 to option ‘-mt’
which indicates module type. Other necessary options to 

this module includes (1) the option ‘-pc’: full path of the 
base folder where class files are located, and (2) the 
option ‘-da’: database connection URL which means the 
name and port number of the server hosting database and 
the name of the database connect to.  The user can also 
change the default user name (using option ‘-du’) and 
password (using option ‘-dp’) of the database as well as 
assign name (with option ‘-pn’) and version (with option 
‘-pv’) of the subject program for its own customization.

Having these options specified, the user can activate 
the dependence analysis so that the module ingests Java 
bytecode and proceeds with the whole-program analysis 
as explained in the Section III.

B. Module#2: Graph Viewer
Once the analysis finishes and the results are stored 

into a database, the user is able to browse and analyze the 
various graphs using a built-in graph viewer by setting the 
value 2 to the option ‘-mt’. Options ‘-da’ and ‘-pj’ are 
required to this module as well. The option ‘-da’ stands
for the same meaning as in the dependence analyzer and 
the option ‘-pj’ specifies the full path of the base folder 
where Java source files are located. Additional options 
may be needed if the default values of database username 
and password were changed.

As an interactive graph viewer starts up, user can 
choose to see to any of the graphs produced. First, the 
user can click on a button named ‘call graph’ on the upper 
right corner of Figure 5 to visualize static call graph for 
the program. Second, user may select an interesting Java 
method from the cascading drop-down menus like the one
on the top of Figure 5. This menu list contains three 
menus: ‘file’, ‘class’ and ‘method’. One source file may 
contain multiple Java classes, and a class possibly has 
several methods. Each time the selection of the one in a 
menu changes, its cascading menu is updated. Note that 
the ‘method’ menu may not contain any implemented 
method if the item selected from the ‘class’ menu is an 
interface. Once chosen method changes, a field labeled 
‘By MethodId’ that displays its method id changes 
accordingly. The user can also specify a method id in the 
field instead.  In the drop-down menu ‘graph type’, 
various types are available like pDG, CFG, DT, CDG and 
DDG. Having method id and graph type selected, user 
can click on the button ‘View’ to visualize the graph on
the right-side graph panel. The buttons ‘Prev’ and ‘Next’
are provided in case anyone needs to browse neighboring
methods with the same graph type. The corresponding 
source file is loaded up on the left-side panel at the same 
time. When user click on a vertex or an edge on the graph 
panel, its detail is displayed on ‘Detailed Information’ 
panel and its line in the source code can be highlighted.

C. Module#3: JSON Format Exporter
JSON is so much more lightweight and less verbose

preferably by some applications. With specifying option 
‘-mt’ to be 3 and appropriately setting the option ‘-da’ and 
option ‘-js’ (the full path of output folder), the module 
enables to export data from database into JSON files.
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