
JavaPDG: A New Platform for Program Dependence Analysis

Gang Shu, Boya Sun, Tim A.D. Henderson, Andy Podgurski
The Dept. of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, OH 44106

<gang.shu, boya.sun, tadh, podgurski>@case.edu

Abstract—Dependence analysis is a fundamental technique
for program understanding and is widely used in software
testing and debugging. However, there are a limited number
of analysis tools available despite a wide range of research
work in this field. In this paper, we present JavaPDG1, a
static analyzer for Java bytecode, which is capable of
producing various graphical representations such as the
system dependence graph, procedure dependence graph,
control flow graph and call graph. As a program-
dependence-graph based analyzer, JavaPDG performs both
intra- and inter-procedural dependence analysis, and
enables researchers to apply a wide range of program
analysis techniques that rely on dependence analysis.
JavaPDG provides a graphical viewer to browse and analyze
the various graphs and a convenient JSON based
serialization format.

Keywords-program dependence graph; system dependence
graph; procedure dependence graph; call graph; Java Virtual
Machine; Java bytecode

I INTRODUCTION

Program dependence analysis is a fundamental
technique for program understanding, and is widely used
in software testing and debugging. A program element, x,
is said to be dependent on another one, y, if y controls the
execution of x or influences the data utilized by x.
Techniques for dependence analysis can be categorized
into two types [1]: static analyses [2, 3] and dynamic
analyses [4, 5]. Static dependences are computed by
taking all the possible executions into consideration
without actually executing the program; in contrast the
computation of dynamic dependences relies on execution
profiles for a given test suite. This work takes the static
approach and does not incorporate any run-time
information. Compared with the large number of
publications on dependence analysis, there have been only
a few implementations. Moreover, due to the nature of
the problem most tools target particular languages (often
C or related languages), and only few exist for object-
oriented languages like Java. CodeSurfer [6, 7] is a
typical static analysis tool from GrammaTech for C/C++.
Unlike some well-known frameworks such as Soot [8]
and Wala [9], which create intermediate representations
from Java bytecode, JavaPDG analyzes Java bytecode
directly.

1 The JavaPDG tool and manual, as well as figures in this paper are
publicly available at http://selserver.case.edu:8080/javapdg/.

(a) Example PDG

(b) Example SDG
Figure 1

As illustrated in the Figure 1(a), a PDG [10] is defined
as a labeled, directed graph that maps out control
dependences (blue edges) and data dependences (green
edges) between elements in a program. A system
dependence graph (SDG) [11] is a generalization of PDG
and contains one procedure dependence graph (pDG) for
each method. In the Figure 1(b) for an example SDG,
two pDGs are linked together by inter-procedural control
dependence edges (blue dashed lines) and data
dependence edges (green dashed lines). A significant
body of recent research applies PDG in combination with
graph mining techniques such as frequent subgraph
mining and subgraph matching in order to discover
implicit programming rules and rule violations in
software (e.g., [12-16]); to conduct change impact
analysis for evolving software systems (e.g., [17, 18]);
and to detect semantically similar code from a code base
(e.g., [19-21]). Empirical studies of the above research
are currently limited to C/C++ programs because there is
a lack of PDG-based tools for other languages such as
Java. The goal of this work is to fill a gap by facilitating

The callee method:

int z = foo(int x, int y)

entry foo()

x y z

In the caller method:

c = foo(a, b)

call foo()

a b c

Source Code:

If

a=m

n=a

test

a b

1: a = m;

2: if (!a)

3: {

4: b = test (a);

5: n = a;

6: }

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation

978-0-7695-4968-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICST.2013.57

408

the adaptation of proposed dependence-based analysis
techniques to Java bytecode programs.

We adopt and implement the approaches proposed by
Zhao [22] on dependence analysis for Java bytecode.
JavaPDG implements static dependence analysis for
Java Virtual Machine (JVM) bytecode. The tool parses
the bytecode of a Java program, computes the SDG and
related graphs, and stores the data for each program in a
database. JavaPDG includes tools for visualizing the
graphs it produces and for exporting the data in the JSON
format. Additionally, users are able to query the output
using SQL by utilizing Apache Derby [23].

The remainder of the paper is organized as follows.
Section II presents background on dependence analysis
for Java bytecode. Section III gives the overview of
JavaPDG and introduces analysis approaches behind.
Section IV gives a quick view of using JavaPDG. Section
V introduces related work on (1) applying dependence
analysis in software testing and debugging, (2) related
Java bytecode analysis frameworks, and (3) various
modifications to the traditional SDG for representing Java
source code. Finally, we summarize the features of the
JavaPDG and propose future improvements in the Section
VI. We give a demo description in the Appendix.

II BACKGROUND

In Java, source code is compiled to bytecode, a binary
format that contains loading information and execution
instructions for the JVM [24]. There are several other
languages which also target the JVM such as: Scala [25]
and Clojure [26]. The JVM is a stack oriented virtual
machine with a bytecode consisting of a mixture of high
and low level instructions. The high level instructions
deal with object manipulations such as getting, setting
field members and invoking methods. The low level
instructions do stack manipulations and basic arithmetic
for a variety of data types.

A JVM instruction consists of a one-byte opcode that
indicates a particular operation, followed by zero or more
operands specifying the constants, references or local
variables involved in the operations. Unlike human-
readable source code, bytecode encodes the result of
parsing and semantic analysis on the source code, and
they therefore allow much better performance than direct
interpretation of source code.

Traditional dependence analysis has been employed to
a range of languages, however Zhao [22] pointed out that
the existing techniques cannot be applied to Java bytecode
directly due to the specific features of JVM. Zhao also
gave guidance to analyze control flow in bytecodes [28],
and introduced primary types of intra-procedural
dependences specific to Java bytecode [22].

Figure 2 shows an example SDG for Java bytecode.
This SDG is constructed from a Java class with two
methods and hence consists of two pDGs. The left side

shows source code statements compiled into Java
bytecode instructions. The right side shows pDG vertices
(corresponding to JVM instructions) linked together by
control-dependence edges (blue) and data-dependence
edges (green). Intra-procedural dependences are shown
as solid lines while inter-procedural dependences are
shown as dashed lines.

III OVERVIEW OF JAVAPDG
Dependence analysis for Java bytecode introduces

some challenges, mainly due to: (1) its complex
branching instructions including unconditional branches,
simple conditional branches and compound conditional
branches; (2) its stack-based architecture, in which stack
cells store intermediate calculations and may lead to
implicit data flow between instructions; and (3) Java
specific features, such as instance method invocation
which implicitly passes the reference this into the callee
method, adding additional control and data dependence
edges.

A. Dependence Analysis
To address the above difficulties, JavaPDG evaluates

and implements the primary types of dependences in a
bytecode program identified by Zhao [22] for dependence
analysis. We ignore some sources of control dependences
mentioned in Zhao’s work such as unconditional
branching instructions goto, goto_w, jsr and jsr_w,
because they result in over-expansion of SDG produced.
Though these instructions can change the flow of control
for the instruction execution, they are usually used with
conditional branching instructions and hence were left out
of consideration.

1) Intra-Procedural Control Dependences
Intra-procedural control dependences represent

interactions due to conditional control flow between
instructions inside a method. An instruction, x, is control
dependent on another instruction, y, if y controls whether
or not x is executed. For example all the instructions in
the body of the if-statement (and else-statement) are
control dependent on the branching instruction of the if-
statement. Thus, identifying control conditions that may
affect the program execution is the first step.

In the JVM, a branching instruction can conditionally
cause program execution to jump to an indicated
instruction or continue to the next instruction. Such
instructions include: (1) simple branching instructions:
ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge,
if_acmpeq and if_acmpne, and (2) compound branching
instructions: tableswitch and lookupswitch. Since these
instructions can control which instructions the JVM
executes, they are the direct source of control
dependences.

409

In addition to the explicit control dependences arising
from branch instructions, method entries also control
which set of instructions the machine executes. To
facilitate inter-procedural dependence analysis and to
collect caller and callee functions together, we create a
special entry point for each method, and it controls all
top-level instructions inside a method.

Another source of control dependences comes from
call-sites, which manage the type and the number of
parameters passed into and returned from a callee method.
Every call-site directly controls its actual-input
parameters and actual-output parameter (if any). Many
programming patterns mined by Chang et al [12, 13]
involving call-sites indicate that the surrounding context
of call-sites is a highly probable spot to discover program
defects.

Consider, for example, the function main() in Figure
2. Control dependence arises from branch instructions
(colored blackish green). The branching instruction #15
if_icmplt (corresponding to the while-statement in the
source code) pops the top two ints (say value1 and value2)
off the JVM stack and compares them. If value2 is
greater than or equal to value1, execution continues at the
next instruction #16; otherwise program execution jumps
to instruction #5. As a result, instructions #7, 8, 11, 12,
13 and 14 are control dependent on instruction #15.

Control dependence may also arise due to call-site
instructions (colored orange). The instruction #7 calls

add() which has two actual-input parameters and one
return value, so instruction #7 controls instruction #5, 6
and its actual-out node. The call-site instruction #11
invokes the same function add() as instruction #5 does,
thus it similarly controls instructions #9 and 10 and an
actual-out node. The call-site instruction #18 is a little
different because its callee method does not contain a
return value, so it merely controls its two actual-input
parameters #16 and #17.

Control dependence also arises from the method
entry that controls every top-level instruction (without a
common control-dependent predecessor) inside a method.
In the example main() function, instructions #0, 1, 2, 3, 4,
15, 18, 19 and the formal input parameter are control
dependent on the method-entry node.

2) Intra-Procedural Data Dependences
Intra-procedural data dependences identify the data

flow between instructions within a single method. Using
reaching definition and upward exposed uses analysis,
use-to-definition chains can be constructed.[29] From
there, the data dependence graph for the procedure is
quite easy to produce. Unfortunately, the traditional
definition-use chain does not work for implicit data-flow
between instructions via the JVM stack. For example,
instruction istore stores an integer from the stack to a
local variable, while instruction iload retrieves an integer
from a local variable. The two instructions can be data-
dependent on each other in two independent situations: (1)

Figure 2 An example Java system dependence graph (right side) generated from Java bytecode (left side).

410

iload is data dependent on istore if they refer to the same
local variable, and its value read by iload was written by
istore via the variable; (2) istore is data dependent on
iload if they refer to the same stack cell, and its value read
by istore was written by iload via JVM stack. The data
flow between stack and local variable for each situation is
shown in Figure 3.

Situation#1: iload is data dependent on istore via local variable

Instruction
execution

istore <var#1> store integer from stack to variable#1
iload < var#1> retrieve integer from variable#1 to stack

Before After istore <var#1> After iload < var#1>
Stack Var#1 Stack Var#1 Stack Var#1
value - - value value -

Situation#2: istore is data dependent on iload via JVM stack

Instruction
execution

iload < var#1> retrieve integer from variable#1 to stack
istore <var#2> store integer from stack to variable#2

Before After iload <var#1> After istore <
var#2>

Stack Var#1 Stack Var#1 Stack Var#2
- value value - - value

Figure 3 The data flow analysis between JVM stack cells and local
variables in the two example situations.

In the JVM, as each new thread comes into existence,
it gets its own program counter and JVM stack frame.
Method execution state is stored on the stack. Each stack
frame contains local variables, method parameters, the
return value (if any) and intermediate calculations. In
order to track both data-dependence situations, JavaPDG
monitors the data flow via an abstract variable regardless
of local variables or JVM stack, and determines the
define-set D and use-set U of each instruction in terms of
the values it writes to and reads from the abstract variable,
respectively. Informally, we define two instructions as
data dependent if they might reference the same abstract
variable and one of the references is an assignment to the
variable.

Take function add() in Figure 2 for example. When
the function is called, the JVM allocates a stack frame and
pushes the values of method arguments on the top of the
stack. The instruction #0 iload_0 retrieves the value of
the first argument a onto stack and this value is then
transferred into instruction #2 iadd; the similar procedure
makes the value of the second argument b flow into the
instruction #2 via the stack as well. iadd pops two ints
from the stack, adds them, and pushes the int result back
onto stack. This computational result is popped up and is
finally returned by instruction #3 ireturn.

JavaPDG ignores the container where data is read
from or written to but tracks the sender and receiver that
uses the data; in the running example, the return value is
data dependent on ireturn and further dependent on iadd.

The instruction iadd is data dependent on both iload_0
and iload_1 which is transitively data dependent on input
nodes node a and b, respectively.

3) Inter-Procedural Dependences
There are three types of dependences between

methods [30]: 1) Method-call dependences that represent
call relationships between a caller and the callee method;
2) Parameter-in dependences that represent parameter
passing between actual-input parameters and formal-input
parameter; 3) Parameter-out dependences representing
parameter passing between a formal-output parameter
(return value) and actual-output parameters. Thus, in the
SDG, pDGs are associated with the three types of inter-
procedural control and data dependence edges.

Refer again to Figure 2. The inter-procedural control-
dependence edges connect call-site instructions #7 and
#11 in the function main() to the entry vertex of the callee
function add(). And there are four inter-procedural data-
dependence edges starting from actual-input vertices in
the caller and ending at their corresponding formal-input
vertices in the callee; and two inter-procedural data-
dependence edges associated formal-output vertices with
actual-output vertices.

Figure 4 The JavaPDG Framework

B. Framework
The analysis process takes as input the compiled class

files of a Java program, and yields a SDG and related
graphs as the final output after performing the following
steps as indicated in Figure 4:

(1) Preprocessing: In the SDG, one pDG vertex
represents each instruction. Artificial entry and exit
vertices for every method are added to the graph to
represent the start and end of the method, respectively. A
vertex is added for every call-site as its actual-output
parameter if the callee method has any return value.

411

(2) Control Flow Analysis: The bytecode of each
method is transformed into a control flow graph (CFG).
This step makes the unstructured bytecode control flow
explicit. The CFG is the basis for construction of a pDG.
Dependence analysis involves two steps: control-
dependence analysis and data-dependence analysis.
Conventionally, both are based upon the CFG.

(3) Control Dependence Analysis: A dominance tree
(DT) is computed for each CFG. Informally, control
dependent nodes come after a decision and before a
junction on a CFG. A DT characterizes the topological
ordering in a flow-graph and is therefore used to identify
control dependences on the CFG. Having CFG and DT, a
control dependence graph (CDG) for every method is
derived. In the CFG, if there is a path from vertex x to y
that doesn’t contain the immediate forward dominator of x,
y is control dependent on x.

(4) Data Dependence Analysis: A data dependence
graph (DDG) for every method is calculated by tracking
data flows on its CFG. A data flow is usually represented
by a definition-use chain, i.e., one instruction assigns a
value to an abstract variable and the other instruction uses
the value. Reaching-definition and upward-exposed-uses
analyses are conducted following the steps: 1) analyze the
effect of each instruction in terms of its variable definition
and use sets; 2) iteratively propagate the information over

the CFG; 3) during each iteration, inspect whether there is
any unknown definer/assigner of the variable(s) used in
each instruction, and update its information sets
accordingly; 4) once the information propagation ends (no
changes are found), the data dependences between
instructions is calculated by the definition-use chain
analysis.

(5) Inter-procedural Analysis: An SDG is a
collection of interconnected pDGs, each of which is
composed of the CDG and DDG for a method. The static
call graph of a program is used to investigate
communications between methods. Based on the call
graph, three types of inter-procedural control and data
dependences are computed.

(6) The Output: The output SDG is a labeled,
directed graph consisting of multiple pDGs. Besides the
SDG, JavaPDG outputs some additional information,
including
� Static structure of a program that describes classes,

fields, methods, and relationships among them.
� Variable information that contains the name, type and

scope of every class field, object field and local
variable (including formal input parameter).

� Control flow graphs and dominance trees that are
constructed during dependence analysis and share the
same vertices as in the SDG.

Figure 5 A Screenshot of JavaPDG Viewer

412

� A static call graph whose vertices correspond to Java
methods and whose edges represent potential caller-
callee relationships indicated in the program.

IV USING JAVAPDG
For a Java program, JavaPDG automates dependence

analysis from bytecode to SDG. JavaPDG maintains an
embedded Apache Derby (or Java DB) database, which
stores the intermediate data and output. One database is
created for a subject program. The results can be also
exported to JSON format. JavaPDG thus enables
researchers to extend and customize the produced SDG to
meet their research-specific needs.

A graphical viewer is included in JavaPDG that allows
users to browse the program dependence graphs (or call
graph) and inspect the source code. In Figure 5, a
screenshot of the viewer is shown. The tool can display
not only pDG for single method but also its CFG, DT,
CDG and DDG for separately reviewing. The static call
graph for the whole program can be also visualized in the
viewer. In Figure 5, the left side highlights a Java method
in its source file and the right side shows pDG vertices
associated by intra-procedural control-dependence edges
(blue) and data-dependence edges (green).

V RELATED WORK

A. PDG-based Research
PDG, because of its usefulness, has become the focus

of recent research on software testing and debugging.
CodeSurfer, the commercial PDG-based analyzer,
supports most of the following studies on C/C++
programs. Chang et al [12, 13] showed how to use PDG
as a general representation of programming rules. They
then employed a frequent subgraph mining algorithm on
SDG to find programming rules, and used a graph
matching algorithm to find rule violations. Sun et al [14,
16] explored how to propagate bug fixes using fast
subgraph matching on PDGs transformed from a subject
program. In a further extension, Sun et al [15] presented
an approach to discover and transform project-specific
rules from PDGs into checkers for Klocwork, a
commercial static analysis tool. Klocwork can then be
utilized to find rule violations. Acharya and Robinson [17]
proposed a framework for change impact analysis using
PDG-based slicing for large and evolving industrial
software systems. Leitner et al [31] presented a test case
minimization method based on static program slicing. It
starts from the failure instruction, and proceeds
backwards by following data dependences to identify a
minimized, subset of the code consisting only of those
instructions that might affect the failure instruction.
Krinke [20] developed an approximation approach to
identify similar code in programs by finding isomorphic
subgraphs in PDGs. Nagy and Mancoridis [32] proposed
an approach to locate faults that are related to security by
conducting dataflow analysis on PDGs to identify parts of
the source code that involve user input. Shu et al [33]
developed a technique to build a causal graph based on a

program’s dynamic call graph and inter-method DDG for
locating faulty methods in large and complex software
using causal inference methodology. Baah et al [34]
showed how PDG can be used to construct a probabilistic
graphical model that captures the statistical dependences
among program elements and enables the use of
probabilistic reasoning to analyze program behaviors.

B. Dependence Analysis Framework for Java Bytecode
Soot [8] is a widely used optimization frameworks for

the static analysis on Java bytecode, and provides four
intermediate representations for analyzing and
transforming Java bytecode. Soot has been evolving for
more than a decade and it provides some useful APIs for
program dependence analysis. However, one important
feature that Soot has been lacking is the implementation
of an inter-procedural program analysis framework.

Wala [9] is another well-known framework for static
analysis on Java bytecode. Wala extracts static single
assignment (SSA) representation from Java bytecode and
is able to conduct iterative dataflow analysis, pointer
analysis and call graph construction on it. A prototype
SDG slicer has been provided in its recent versions.
However, its basic PDG vertex represents the SSA
instruction rather than Java bytecode instruction as used
in JavaPDG.

Indus [35] is a non-PDG based program slicer in
which Java programs are represented in Jimple [36] via
Soot. Instead of maintaining inter-procedural dependence
edges in a SDG, the logic to handle them (including
unconditional jumps, procedure calls, etc.) is encoded in
the Indus’s slicing algorithm.

C. Java System Dependence Graph
There have been a number of modifications proposed

to traditional SDG for the representation of Java programs.
However, Java is a growing language and grammar
changes may affect the generality of grammar-dependent
program slicers, therefore the following publications
actually have not resulted in general tools. Kovács et al.’s
approach [37] is able to represent some Java-specific
features such as inheritance, packages, interfaces and
polymorphic calls. Zhao [30] used a group of dependence
graphs to represent Java methods, classes, interfaces,
programs, and packages, respectively. Chambers et al.
[38] proposed an approach that can accurately analyze
data dependences in Java programs on the occurrences of
exceptions, synchronization and memory consistency.
Grove et al. [39] gave an approach to draw out call graph
for object-oriented programs. Liang and Harrold [40]
improved precision in inter-procedural slicing for Java
programs by making the dependence analysis partially
object-sensitive. Walkinshaw et al. [41] combined and
adapted the earlier approaches for multiple dependence
representations, and provided a guidance for Java system
dependence graph constructions. These methods provide a
theoretical basis for dependence representations of Java
programs.

413

VI CONCLUSION

JavaPDG is a static analysis platform that constructs
system dependence graph from Java bytecode. It aims at
facilitating PDG-based research as there does not exist a
SDG analysis tool directly built on Java bytecode. It
stores intermediate data and graph-based output in a built-
in database. Its portable, project-specific database design
and user-friendly graphical viewer provides users with a
convenient way to explore the secrets behind the PDGs.

Future versions of JavaPDG will consider additional
sources of dependences such as exceptions. When an
exception is thrown, execution of the method terminates
immediately and the control transfers to another location,
possibly non-local to the method where the exception was
thrown. Exceptions may be thrown explicitly or implicitly
by instructions and introduce new dependences into the
program.

Another area of future work is representation.
Currently, the resulting SDG has nodes which represent
individual bytecode instructions. Similar graphs can be
built at more abstract levels such as basic blocks allowing
the analyst to get a better overview of the dependence
structures in the application.

VII ACKNOWLEDGMENTS

We would like to thank ABB Corporate Research for
supporting this work. We also thank the National Science
Foundation for supporting this work with awards CCF-
0820217 and CNS-1035602.

VIII REFERENCES

1. F. Tip, "A Survey of Program Slicing Techniques," Journal
of Programming Languages, vol. 3(3), pp.121-189, 1995.

2. M. Weiser, "Program slicing," the 5th Intl. Conf. on
Software Eng.(ICSE), San Diego, California, 1981.

3. D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe.
"Dependence Graphs and Compiler Optimizations," the 8th
ACM Symp. on Principles of Programming Languages, pp.
207–218, 1981.

4. H. Agrawal and J.R. Horgan. "Dynamic Program Slicing,"
the ACM SIGPLAN’90 Conf. on Programming Language
Design and Implementation, pp. 246–256, 1990. SIGPLAN
Notices 25(6).

5. W. Masri and A. Podgurski. "Algorithms and Tool Support
for Dynamic Information Flow Analysis," Information and
Software Technology, vol. 51(2), pp.385–404, 2009.

6. P. Anderson and T. Teitelbaum. "Software Inspection
Using Codesurfer," the 1st Workshop on Inspection in
Software Engineering, 2001.

7. L. Andersen. "Program Analysis and Specialization for the
C Programming Language," PhD thesis, Department of
Computer Science, University of Copenhagen, May 1994.

8. R. Vall´ee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. "Soot-A Java Optimization Framework,"
the 1999 Conf. of the Centre for Advanced Studies on
Collaborative Research (CASCON’99), pp. 125–135, 1999.

9. WALA: T.J. Watson Libraries for Analysis. Available from:
http://wala.sourceforge.net/wiki/index.php/Main_Page.

10. J. Ferrante, K.J. Ottenstein, and J.D. Warren. "The Program
Dependence Graph and Its Use in Optimization," ACM

Transactions on Programming Languages and Systems, vol.
9(3), pp.319–349, 1987.

11. S. Horwitz, T. Reps, and D. Binkley. "Interprocedural
Slicing Using Dependence Graphs," ACM Transactions on
Programming Languages and Systems, vol. 12(1), pp.26–
61, 1990.

12. R. Y. Chang, A. Podgurski, and J. Yang. "Finding What’s
not There: A New Approach to Revealing Neglected
Conditions in Software," the Intl. Symp.on Software Testing
and Analysis (ISSTA), London, United Kingdom, 2007.

13. R. Y. Chang, A. Podgurski, and J. Yang. "Discovering
Neglected Conditions in Software by Mining Dependence
Graphs," IEEE Transactions on Software Engineering, vol.
34(5), pp.579–596, 2008.

14. B. Sun, G. Shu, A. Podgurski, S. Li, S. Zhang, and J. Yang,
"Propagating Bug Fixes with Fast Subgraph Matching," the
21st Intl. Symp. on Software Reliability Engineering
(ISSRE), San Jose, CA, 2010.

15. B. Sun, G. Shu, A. Podgurski, and B. Robinson. "Extending
Static Analysis by Mining Project-Specific Rules," the 34th
Intl. Conf. on Software Eng. (ICSE), Switzerland, 2012.

16. B. Sun, R. Y. Chang, X. Chen, and A. Podgurski,
"Automated Support for Propagating Bug Fixes," the 19th
Intl. Symp. on Software Reliability Eng. (ISSRE), Seattle,
Washington, 2008.

17. M. Acharya and B. Robinson, “Practical Change Impact
Analysis based on Static Program Slicing for Industrial
Software Systems,” the 33rd ACM SIGSOFT Intl. Conf. on
Software Eng. (ICSE), Waikiki, Honolulu, Hawaii, 2011.

18. X. Qu, M. Acharya, and B. Robinson. "Impact Analysis of
Configuration Changes for Test Case Selection," the 22nd
Intl. Symp. on Software Reliability Engineering (ISSRE),
Hiroshima, Japan, 2011.

19. R. Komondoor and S. Horwitz. "Using Slicing to Identify
Duplication in Source Code," the 8th Intl. Static Analysis
Symp. (SAS), 2001.

20. J. Krinke. "Identifying Similar Code with Program
Dependence Graphs," the 8th Working Conf. on Reverse
Eng., 2001.

21. C. Liu, C. Chen, J. Han and P. S. Yu. "GPLAG: Detection
of Software Plagiarism by Program Dependence Graph
Analysis," the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD’06), Philadelphia, 2006.

22. J. Zhao. "Dependence Analysis of Java Bytecode," the 24th
IEEE Annual Intl. Computer Software and Applications
Conference, pp. 486-491, 2000.

23. Apache Derby version v10.9.1.0. 2012; Available from:
http://db.apache.org/derby/.

24. F. Yellin, and T. Lindholm. "The Java Virtual Machine
Specification," Addison-W esley, 1996.

25. M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S.
Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and M.
Zenger. "An Overview of the Scala Programming
Language," Technical Report, EPFL, Lausanne,
Switzerland, 2004.

26. R. Hickey. "The Clojure Programming Language," the
2008 Symp. on Dynamic Languages, (DLS ’08), New York,
NY, 2008.

28. J. Zhao. "Analyzing Control Flow in Java Bytecode," the
16th Conf. of Japan Society for Software Science and
Technology, pp. 313–316, 1999.

414

29. S. S. Muchnick. "Advanced Compiler Design and
Implementation," Morgan Kaufmann, 1997.

30. J. Zhao. "Applying Program Dependence Analysis to Java
Software," Workshop on Software Eng. and Database
Systems, 1998 International Computer Symp., 1998.

31. A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
"Efficient Unit Test Case Minimization," the 22nd Intl.
Conf. on Automated Software Eng., Atlanta, Georgia, 2007.

32. C. Nagy, and S. Mancoridis, "Static Security Analysis
based on Inputrelated Software Faults", the 13th European
Conference on Software Maintenance and Reengineering
(CSMR'09), Kaiserslautern, Germany, March, 2009.

33. G. Shu, B. Sun, A. Podgurski, and F. Cao. "MFL: Method-
Level Fault Localization with Causal Inference," the 6th
Intl. Conf. on Software Testing, Verification and Validation
(ICST), Luxembourg, 2013.

34. G. K. Baah, A. Podgurski, and M. J. Harrold. "The
Probabilistic Program Dependence Graph and its
Application to Fault Diagnosis," the Intl. Symp.on Software
Testing and Analysis (ISSTA), Seattle, WA, 2008.

35. G. Jayaraman, V. P. Ranganath, and J. Hatcliff. "Kaveri:
Delivering the Indus Java Program Slicer to Eclipse," the
Fundamental Approaches to Software Eng. (FASE’05),
LNCS, vol. 3442, pp. 269–272. Springer, 2005.

36. R. Vallee-Rai and L. J. Hendren. "Jimple: Simplifying Java
Bytecode for Analyses and Transformations," Technical
report, McGill University, Montreal, Canada, 1998.

37. G. Kovács, F. Magyar, and T. Gyimóthy. "Static Slicing of
Java Programs," Technical Report TR-96-108, Jozsef Attila
University, Hungary, 1996.

38. C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and
H. Srinivasan, “Dependence Analysis for Java,” the 12nd
Intl. Workshop on Languages and Compilers for Parallel
Computing, San Diego, CA, 1999.

39. D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call
Graph Construction in Object-Oriented Languages,” ACM
Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, Atlanta, GA, 1997.

40. D. Liang and M. J. Harrold. "Slicing Objects using System
Dependence Graphs," the Intl. Conf. on Software
Maintenance, pp. 358–367. IEEE Computer Society, 1998.

41. N. Walkinshaw, M. Roper, and M. Wood. "The Java
System Dependence Graph," the 3rd IEEE Intl. Workshop
on Source Code Analysis and Manipulation, pp. 55, 2003.

APPENDIX: DEMO DESCRIPTION

The purpose of this demo is to show the main features
of our static program dependence analysis tool JavaPDG.
We have implemented JavaPDG in Java, which can be
run in standalone mode within Java Runtime Environment.
The user interacts through the command-line interface of
JavaPDG that has three main modules and we plan to run
the demo by letting the audience go through each of them
to experience the easiness and usefulness of the tool.
Next we describe how we plan to run the demo.

A. Module#1: Program Dependence Analyzer
User can run the program dependence analyzer from

the command line by setting the value 1 to option ‘-mt’
which indicates module type. Other necessary options to

this module includes (1) the option ‘-pc’: full path of the
base folder where class files are located, and (2) the
option ‘-da’: database connection URL which means the
name and port number of the server hosting database and
the name of the database connect to. The user can also
change the default user name (using option ‘-du’) and
password (using option ‘-dp’) of the database as well as
assign name (with option ‘-pn’) and version (with option
‘-pv’) of the subject program for its own customization.

Having these options specified, the user can activate
the dependence analysis so that the module ingests Java
bytecode and proceeds with the whole-program analysis
as explained in the Section III.

B. Module#2: Graph Viewer
Once the analysis finishes and the results are stored

into a database, the user is able to browse and analyze the
various graphs using a built-in graph viewer by setting the
value 2 to the option ‘-mt’. Options ‘-da’ and ‘-pj’ are
required to this module as well. The option ‘-da’ stands
for the same meaning as in the dependence analyzer and
the option ‘-pj’ specifies the full path of the base folder
where Java source files are located. Additional options
may be needed if the default values of database username
and password were changed.

As an interactive graph viewer starts up, user can
choose to see to any of the graphs produced. First, the
user can click on a button named ‘call graph’ on the upper
right corner of Figure 5 to visualize static call graph for
the program. Second, user may select an interesting Java
method from the cascading drop-down menus like the one
on the top of Figure 5. This menu list contains three
menus: ‘file’, ‘class’ and ‘method’. One source file may
contain multiple Java classes, and a class possibly has
several methods. Each time the selection of the one in a
menu changes, its cascading menu is updated. Note that
the ‘method’ menu may not contain any implemented
method if the item selected from the ‘class’ menu is an
interface. Once chosen method changes, a field labeled
‘By MethodId’ that displays its method id changes
accordingly. The user can also specify a method id in the
field instead. In the drop-down menu ‘graph type’,
various types are available like pDG, CFG, DT, CDG and
DDG. Having method id and graph type selected, user
can click on the button ‘View’ to visualize the graph on
the right-side graph panel. The buttons ‘Prev’ and ‘Next’
are provided in case anyone needs to browse neighboring
methods with the same graph type. The corresponding
source file is loaded up on the left-side panel at the same
time. When user click on a vertex or an edge on the graph
panel, its detail is displayed on ‘Detailed Information’
panel and its line in the source code can be highlighted.

C. Module#3: JSON Format Exporter
JSON is so much more lightweight and less verbose

preferably by some applications. With specifying option
‘-mt’ to be 3 and appropriately setting the option ‘-da’ and
option ‘-js’ (the full path of output folder), the module
enables to export data from database into JSON files.

415

