
Cryptography and Complexity

By Tim Henderson (tadh@case.edu)
Dept. of Electrical Engineering and Computer Science

Case Western Reserve University

Modern cryptographic systems are built on problems which are assumed to be computation-
ally infeasible. Computational infeasibility means a computation which although computable
would take far too many resources to actually compute. Ideally in cryptography one would
like to ensure an infeasible computation’s cost is greater than the reward obtained by com-
puting it. At first glance this seems to be an odd notion to base a cryptographic system on.
Don’t we want our cryptographic systems to be totally secure? They should be unbreakable!
“It may take a long time to break it,” seems like a poor guarantee of security.

However, it is the best guarantee which can exist in either an ideal world (from a math-
ematical perspective) or the physical world. As we shall see later in the survey, if several
widely held assumptions turn out to be false we can not even make the guarantee of com-
putational infeasibility.

1.1 Classical Security

In classical cryptographic systems, those known to the academic community prior to the
publication of Diffie and Hellman’s paper [DH76], security assumptions were based on the
results of information theory. This approach is sometimes referred to as information-theoretic
and is concerned with whether there exists information in the ciphertext which originated in
the plaintext or in the key. We say a system has perfect-secrecy if:

∀m∈M∀c∈C : Pr[M = m|C = c] = Pr[M = m] (1)

Intuitively this formula says an attacker gains no information about the contents of a
message from the ciphertext of the message. Does this mean the attacker knows nothing
about the message? Of course not! However, he doesn’t learn anything new about the
message by closely examining the ciphertext. Therefore, the ciphertext of the message is
essentially useless to an attacker. [HP08]1

However, any system with perfect-secrecy requires the length of the key to be at least
as large as the sum of the lengths of all messages encrypted with it. Since the key has to
be at least as long as the messages sent such a system is of little value in practical modern
situations.[Gol01]2

There are two practical problems with a system with perfect-secrecy the first is “Key
Distribution.” Since the sender and receiver must use the same key they must some how
secretly agree on a key beforehand. Therefore, there must exist some “second channel” by

1See section 4.6.1
2See pages 2,3

1

which the sender and receiver can communicate. The second problem has to do with the
length of the key. Since it is as long as the message there seems to be only small utility in
the system as the sender and receiver could conceivably securely exchange messages using
their secure “second channel” they use for key distribution.

These to problems make the system an unrealistic system for securing (for instance) inter-
net communications. Internet communications do not require the parties to know each other
before hand and allow for no secondary secure communications channel to exist. Therefore,
some other encryption methodology must be used if one wants to secure communication in
this setting.

1.2 Modern Security

In modern system we no longer discuss security in terms of whether a system provides perfect-
secrecy. Instead, we say if a ciphertext contains information leaked from the plaintext
it should be computationally infeasible to extract that information. We can provide this
property even in cases where the key is shorter than the message. This property can also be
provided in cases where the attacker has access to the encryption key (but not of course to
the decryption key).[Gol01]3

In following section 4 we shall unpack and rigorously define (using [Gol01]’s definitions)
the definition above. In particular we will look at the definition in the context of symmetric
key systems. The difficulties of public key systems will also be briefly presented but without
detailed exposition. However, before we get to the fun stuff we will first present complexity
theory and one way functions.

2 A Tour of Computational Complexity Theory

In many ways Computability Theory, and its daughter field Complexity Theory, began with
Gödel’s proof of the incompleteness of axiomatic systems in 1931.[G3̈1] The proof is a tremen-
dously important result in meta-mathematics stating: no recursively axiomatized mathe-
matical system can be both complete and consistent. Thus, we cannot prove in a particular
theory that the same particular theory is consistent. Indeed, if we did construct such a proof
it would prove exactly the opposite. Thus, there are some mathematical sentences which are
true for which no algorithm can decided on their truth value.

In a similar result, Alan Turing in 1937 proved that for general programs one could
not decide whether the programs would halt for all inputs.[Tur37] During the previous year
Alonzo Church proved the exact same thing for evaluations of λ-Calculus expressions.[Chu36]
Church and Turing later conjectured that the machine Turing defined (eg. Turing Machines)
and Church’s lambda calculus were equivalent. All though this is an unprovable conjecture
it is largely accepted today.

Once actual computational machines were produced (as opposed to the abstract machines
of Turing and Church), programmers became interested in the notion of the complexity of
an algorithm. The complexity of an algorithm is an expression of how much time or space or
other resources the algorithm will use. The representation of time and space is abstract and

3See page 3

2

placed in terms of the size of the parameters to the algorithm. Today, we use asymptotic
notation to express complexity assertions. The notation was standardized by Don Knuth in
1976 but in wide (although inconsistent) use before then. It was invented by Bachmann in
1894 for use in a different context.[Knu76]

The interest in the complexity of algorithms and work on linguistics (particularly for-
mal language hierarchies) lead to work on classifying the “hardness” computational prob-
lems. For instance all of the language classes in the Chomsky hierarchy have hardness
results. Type–0 Languages (all recursively enumerable languages) are recognizable but only
non-deterministically. While, Type–3 languages (referred to as regular languages) can be
recognized in linear time.4[RM00]

This leads to defining complexity classes for problems (as opposed to algorithms). A
complexity class typically refers to a bound on the amount time or space needed to solve the
problem in the worst case. Thus, complexity classes describe how difficult a problem is to
solve in general. The first general results in the theory were obtained in 1965 by Hartmanis
and Stearns who defined the meaning computation complexity.

In particular Hartmanis and Stearns modeled their definition using the computational
model of an N-Tape Turing Machine. Any computational model could have been used,
and today others are used. In particular the authors prove facts about the computability
of particular binary strings, α in the paper. They say α is in a complexity class ST if
T : N → N is a monotone increasing function and there exists a Turing machine M such
that M computes the nth term in T (n) steps.

What does this definition mean intuitively? Think of T as a time function, where time
is a function of the number bits generated. A string can belongs to those complexity classes
which can compute the string according to the complexity class’s specified time function.
Thus, by specifying some general time functions such as (1, n, n2 . . . , 2n) one can begin
classifying bit-strings. The bit-strings correspond to problem solutions. For a simple example
consider the bit-string which corresponds to all prime numbers. To compute it, one would
need to actually compute exactly those numbers which are prime.[HS65]

The type of problem Hartmanis and Stearns classified belongs to the class of problems
known as Decision Problems. Informally, decision problems are problems to which there is a
“yes/no” answer. For instance, deciding whether the first n bits of a string is in a language,
L ⊆ {0, 1}∗, is a decision problem. Complexity classes are more general than just deci-
sion problems however, one can construct complexity classes for any type of computational
problem, optimizations problems for instance.

2.1 The Class NP

Of particular importance to mathematics, computer science and this paper in particular is
the complexity class NP (Non-Deterministic Polynomial Time). The class of NP is defined
(intuitively) as those problems which have easily verifiable solutions. What does it mean for
a solution to be “easily verifiable.” It means given the problem instance and the solution
one can check the validity of the solution in O(nk) where n is parameterized by the problem
and k is a constant.

4ie. time proportional to the size of the input

3

More formally, the class NP is defined in terms of formal languages. Let Σ be an alphabet
and Σ0 be Σ − {∗} where ∗ is the empty symbol. Let Σ∗0 be the closure of all finite strings
made up of symbols in Σ0. We define a language, L, as L ⊆ Σ∗0.

Definition 1. The Class NP5

A language, L, belongs to NP if there exists a Deterministic Turing Machine,M,
a polynomial, p(n) – such that p(n) defines the complexity class ofM6 – and on
any input x ∈ Σ∗0:

• if x ∈ L then there exists a certificate, y ∈ Σ∗0 st. |y| ≤ p(|x|), and M
accepts the input string xy.
• if x /∈ L then for any string, y ∈ Σ∗0, M rejects the input string xy.

The given definition does not discuss Non-Determinism. To see the role of Non-Determinism
consider constructing solutions (certificates) to problem instances (the string x in the defini-
tion). If certificates can be chosen and examined non-deterministically then it will take only
polynomial time to find a solution. However, if we are testing every possible certificate de-
terministically it will take |Σ0|p(|x|) examinations, a combinatorial explosion. Thus, problems
in NP have solutions which are easy to verify but not necessarily easy to construct.

2.2 The Class P

The complexity class P (Polynomial Time) is exactly those problems solvable in deterministic
polynomial time. More formally,

Definition 2. The Class P7

Let Π be a decision problem. Let LΠ = {x ∈ Σ∗0|x is an encoding of an instance of Π},
that is, LΠ is the language of Π. We can then define the class P as:

P = {L ⊆ Σ∗0| there is a Deterministic Turing Machine, M, and a polynomial,

p(n), such that TM ≤ p(n) for all n ≥ 1}

A language is in P if one can construct a Turing Machine which accepts it (and rejects all
non-members) in time less than some polynomial (with respect to the size of the input).

All those problems which belong to P are considered easily solvable, or tractable. While,
they are “easy” one should not make the mistake of assuming they are simple. Given a
polynomial time algorithm which solves a problem one can easily solve it. However, even if
you know a polynomial time algorithm exists for a problem constructing the algorithm may
be difficult.

5See [TW06] page 41 at the bottom.
6That is M computes in the nth bit of output in p(n) time.
7See [TW06] page 23.

4

2.3 P vs. NP

What is the relationship between P and NP? It is known P is contained in NP (ie. P ⊆
NP). However, whether NP ⊆ P is true is one of the greatest open questions in applied
mathematics. The class P containment inside of NP is obvious: if we can find a solution
in polynomial time it is certainly verifiable in polynomial time. To show NP is contained
within P one would need to show every problem in NP can be solved with a polynomial time
algorithm.

The methodology for solving P vs NP with the greatest impact relies on the idea of reduc-
tion. We say problem, Π1 is reducible to another problem, Π2, if one can find a mapping from
every instance of Π1 to equivalent instances of Π2 such that the solutions to the constructed
instances of Π2 correspond to solutions of Π1. A reduction is a polynomial reduction if the
mapping can be done in polynomial time. A problem, Π1, is as “hard” as another problem,
Π2, if Π2 can be reduced to Π2. Thus, hardness is a relational notion. Problems are not
intrinsically hard, they are hard with respect to other problems.

To prove P contains NP one could prove the hardest problem in NP is also in P. By the
definition of hardness above, if a problem, Πh, is the hardest problem in NP than every other
problem in NP is reducible to Πh. Problems which are at least as hard as every problem in
NP are know as NP-Hard problems. A problem does not need to be in NP to be NP-Hard.
However, if a problem is NP-Hard and it is in NP then it is called an NP-Complete problem.

NP-Complete problems exist and their existence is one of the greatest results in com-
plexity theory. It was proved by Stephen Cook in 1971 who found the first NP-Complete
problem. The problem he found is known as SAT (for satisfiability of boolean formulas). He
proved any problem solvable in polynomial time by a Nondeterministic Turing Machine can
be reduced to finding whether or not a boolean formula is satisfiable.[Coo71] Cook’s result
launched a wave of research. The very next year Richard Karp proved 21 other problems
were also NP-Complete.[Kar72]

While there have many hundreds of problems proven to be NP-Complete since Cook
proved SAT, there have been only fruitless attempts to prove P does or does not contain NP.
The leading consensus in the complexity community is P does not contain NP. Furthermore,
since it appears work on proving P contains NP is permanently stalled one can safely assume
NP-Hard problems are in some platonic sense actually difficult to solve.

2.4 Infeasibility

A sharper definition of computational infeasibility can now be given with definitions of Com-
plexity Classes, P, and NP in hand. Recall the opening statement on infeasibility, where we
defined an infeasible computation to be one requiring too many resources to actually com-
pute. If one has encrypted a message one would ideally like the ciphertext to be unreadable.
If the message is a solution to an NP-Complete problem then the ciphertext could be the
problem instance and therefore can only be decrypted by solving the NP-Complete prob-
lem. However, assuming NP is not contained in P, the NP-Complete problem will take time
proportional to |Σ∗0||x| (where x is the ciphertext) to solve.

Therefore, a new working definition of an infeasible computation is a “hard” instance
of an NP-Hard problem of sufficient size. What is sufficient size? Any size which leads to

5

|Σ∗0||x| to be so large as to be uncomputable. An example of such as size might be 160 since
trying 2160 possible solutions is not expected to ever be computable with classical computers
in time less than the age of the universe. What is a “hard” instance? A hard instance is
one in which there exists no better way to find a solution than trying all possible solutions.
Not every instance of a hard problem is hard to solve. Specifying an infeasible computation
requires a hard instance is a necessary restriction.

2.5 Probabilistic Infeasibility

In the previous section it was assumed all computations were exact. No computation some-
times gave the right answer and sometimes did not. However, with an algorithm which
mostly gives right answers could be very useful to the cryptanalyst. Therefore, we briefly
turn our attention to probabilistic computations.

2.5.1 Probabilistic Turing Machines

A Probabilistic Turing Machine (PTM) is a Deterministic Turing Machine (DTM) with an
extra input tape. The tape is called the “coin flipping tape.” The PTM can read one bit of
information at a time from the coin flipping tape. Each bit is assured to be a random bit.8

Computation on the machine proceeds as before except at any time a random choice can
be made. This allows us to construct algorithms which will “probably” but not necessarily
produce the desired answer.

Analyzing the running time of a PTM is a bit different than a DTM. While a DTM’s
running time only depends on its program and the initial configuration of the input tape,
a PTM also depends on the random bits it reads during the computation. Therefore, the
running time of a PTM is a random variable (we denote it as tM(x)). Furthermore, whether
a PTM halts or not on a fixed input is also a random variable. A halting PTM is one which
halts after a finite number of steps for all inputs and all configurations of the coin tossing
tape.

With the definition a halting PTM in hand we are now prepared to reason about its
running time. Worst case running time of a PTM, TM(n), is:

TM(n) = max{t | there exists a x ∈ Σn
0 such that Pr[tM(x) = t] > 0} (2)

Informally, this definition states: the worst case running time of a PTM is the maximum
running time, tM(x), for which the machine will run with some probability greater than
zero. A polynomial PTM is one in which there exists some positive polynomial, p(·), such

8Since a PTM is a theoretical construction rather than a physical construction we can do away with the
nasty realities of life and assume these random bits are actually random! A nice change of pace.

6

that TM(n) ≤ p(n) holds.[TW06]9

Definition 3. BPP, Bounded Probability Polynomial Time

A language L is recognized by a polynomial PTM, M, if:

• for every x ∈ L it holds that Pr[M accepts x] ≥ 2
3

• for every x /∈ L it holds that Pr[M does not accept x] ≥ 2
3

BPP is the class of languages recognized by a polynomial PTM.10,11

The class Bounded Probability Polynomial Time, sometimes called Bounded-Error Proba-
bilistic Polynomial Time, is somewhat analogous to the class P. Computations in BPP are
considered feasible computations. The class P is contained within BPP, P ⊆ BPP . However,
the relationship between NP and BPP has not been established. In practice cryptographers
assume NP * BPP which implies NP 6= P . All problems unsolvable by a polynomial PTM
are considered infeasible, of which NP-Hard problems are a special case. As before, some
instances of hard problems may in fact be easy to solve.

Infeasible computations as defined above are nice formalisms but do not seem too useful.
To utilize the previous definition one has to answer the following question: Given and instance
of a problem is it a hard instance? Unfortunately, we don’t know how to answer this
question.12 As we will see later, if we could easily find hard instances we could construct
a simple and secure crypto-system by sampling hard instances. Therefore, cryptographers
need better assurances than worst-case assurances; a cryptographer needs to know a typical
instance of a problem is hard.[Imp95]

3 One Way Functions

With a firm grounding in Complexity Theory, we turn our attention to cryptography. First,
by capturing the notion of exploitable computational difficulty as epitomized in the one way
function. A one way function is a function which is easy to compute but hard to invert.
More specifically:

Definition 4. One Way Function

1. ∀x computing f(x) = y is easy to compute.
2. ∀y computing f−1(y) such that f(x) ∈ f−1(y) is hard to compute.

The one way function in definition 4 is more of a theoretical construct than an actual
mathematical construct. Therefore, it uses the notion of easy and hard computations without
grounding itself with exact definitions. One can think of this first definition as an abstract,
or ideal, definition.

9See section 4.2
10Note, any constant greater than 1

2 can be used here.
11Definition is a combination of Definition 1.3.4 from [Gol01] and the definition given in Section 4.5 of

[TW06].
12From personal discussion with Prof. Harold Connamacher (harold.connamacher@cwru.edu)

7

Ignoring for the moment the definitional problems, what use is a one way function to the
cryptographer? It turns out one can define secure cryptosystems with one way functions.
Such a cryptosystem will be discussed in detail in section 4. For now consider this simple
example of the power of the idea:

One day while toiling away, Ian had a flash of insight which would put his me-
chanical workings to right. A machine danced in his mind, one which would
make widgets faster and better than before. So clever his insight he knew no one
else would easily come up with the same idea. Thus, he decided not to patent it.
Instead, he wrote down his idea and ran it through a one way function producing
y his certificate of his idea. He then published y widely, placing it in all the
libraries around the country.

Many years passed and Mallory stole Ian’s idea. Mallory being very clever sought
to undue Ian and patented the idea. Then, he sued Ian for patent infringement.
But, since Ian had a certificate of his invention, y, he could prove to the court
he had invented and known about the idea long before Mallory had filed for the
patent. The court agreed with Ian and invalidated Mallory’s patent.

The challenge in section 4 will be transforming the one way function into a workable
encryption device. For while a powerful concept, as demonstrated by the story above, it is
non-obvious how a crypto-system can be constructed from it. But before crypto-systems,
the definition must be tightened. Furthermore, one must be convinced one way functions
can be reasonably expected to exist.

3.1 Strong One Way Functions

There are two vague terms used in definition 4, easy and hard computations. Fortunately,
we have already defined what an easy computation is: an easy computation is on which can
be done in (probabilistic) polynomial time. But what about inversion? What does it mean
for a function to be hard to invert? A function, f , is hard to invert if every probabilistic
polynomial time algorithms will only invert f with negligible probability.

Definition 5. Negligible13

A function, µ : N → R, is negligible if for every positive polynomial, p(·), there
exists an N such that for all n > N ,

µ(n) <
1

p(n)

The definition of negligible is reminiscent of Asymptotic Notation used in the analysis of
algorithms. It concerns itself with the behavior of the function, µ(n), when n grows large.
An additional, and useful, feature of the definition is any negligible function remain negli-
gible after multiplication with any polynomial q(·). Therefore, any event which occurs with

13Definition due to [Gol01] see Def. 1.3.5

8

negligible probability will continue to occur with negligible probability even after polynomial
repetitions. Thus, if f is only invertible with polynomial time algorithm, A, with negligible
probability than no polynomial repetition of A will be likely to invert f .

Definition 6. Strong One Way Functions14

A function, f : {0, 1}∗ → {0, 1}∗, is strongly one way if it is:

Easy to compute There exists a (deterministic) polynomial time algorithm A
such that on input x algorithm A outputs f(x) (ie. A(x) = f(x)).

Hard to invert For every probabilistic polynomial time algorithm A′, every
positive polynomial p(·), and all sufficiently large n the probability A′ inverts
f is negligible. That is:

Pr[A′(f(x)) ∈ f−1(f(x))] <
1

p(n)

In the above definition “input x” should be considered as a random variable drawn from a
uniform distribution over {0, 1}n. Thus, the second condition reads: for any random input
of size n the probability an arbitrary polynomial time algorithm will find a pre-image is
negligible. If such a function could be found or constructed it would offer a strong assurance
of computational difficulty.

3.2 Weak One Way Functions

While strong one way functions ensure any efficient inversion algorithm has only a negligible
likelihood of succeeding; weak one way functions require efficient inversion algorithms will
fail with a non-negligible probability.

Definition 7. Weak One Way Functions15

A function, f : {0, 1}∗ → {0, 1}∗, is weakly one way if it is:

Easy to compute There exists a (deterministic) polynomial time algorithm A
such that on input x algorithm A outputs f(x) (ie. A(x) = f(x)).

Slightly hard to invert There exists a polynomial p(·) such that for every
probabilistic polynomial time algorithm, A′, and a sufficiently large n’s,

Pr[A′(f(x)) /∈ f−1(f(x))] >
1

p(n)

In definition 6 the probability that A′ could invert f has an upper bound of p(·)−1 for every
positive polynomial. In definition 7, there is a single positive polynomial, p(·), such that
p(·)−1 is a lower bound on the failure of any efficient inversion algorithm. Unlike strong one
way functions, weak one way functions are not hard for typical instances. However, they are
hard for some percentage of instances.

14Definition due to [Gol01] see Def. 2.2.1. Note, I simplified the definition slightly for clarity.
15Definition due to [Gol01] see Def. 2.2.2

9

3.2.1 Amplification of Weak One Way Functions

Since weak functions are hard for a non-negligible percentage of inputs they can be used to
construct strong functions. The proof for this bold assertion is given by Goldreich.[Gol01]16

Since one can convert a weak one way function into a strong one it suffices to find weak ones.
While a strongly one way function may yield a more efficient cryptosystem a weak one will
still allow a secure system (as discussed in section 4).

3.3 Hard Core Predicates

If Alice has a strong one way function f , computes y = f(x), and sends y to Bob while Eve
eavesdrops what can Eve learn about x? Depending on the function f Eve may be able to
learn a surprising amount. Since f is hard to invert Eve cannot learn everything about x
but she may not need too. Is there some way to quantify which bits of x Eve can learn about
and which bits she can’t?

There is! The bits which are hard for a polynomial attacker (like Eve) to learn about are
called the “Hard Core” of a one way function. A predicate is a yes/no question, for example:
Does x end with a 0? If a yes/no question is hard for Eve to answer it is called a Hard Core
Predicate. Since a yes/no question only has 2 possible answers Eve can always guess the
answer. Therefore, a predicate is only hard for her to answer if she can’t do better than get
it right about half the time. To be precise:

Pr[EveGuess P(y) = P (x)] ≤ 1

2
+ neg(|x|)

where neg(|x|) is a negligible function (as defined in definition 5). This description of Eve
trying to guess something about x, like whether it starts with 0, leads nicely into a formal
definition:

Definition 8. Hard-Core Predicates17

A polynomial time computable predicate, b : {0, 1}∗ → {0, 1}, is called a hard-
core of a function, f , if for every probabilistic polynomial time algorithm A′,
every positive polynomial p(·), and all sufficiently large |x|’s,

Pr[A′(f(x)) = b(x)] <
1

2
+

1

p(|x|)

Given a hard to invert function, f , one knows some of the bits in its input must be hard
to predict from the output. How does one know which bits are the hard bits? In general
deciding what bits are hard for a function is difficult but one can always construct a Hard-
Core Predicate for any strong one way function. Since one can always construct a strong
one way function from a weak function this poses no limitation to the framework.

16See Theorem 2.3.2 for an impractical but demonstrative conversion and Section 2.6 for an efficient
conversion in the case of one-way permutations.

17Definition due to [Gol01] see Def. 2.5.1

10

3.3.1 Constructing Hard-Core Predicates

The following result was first proved in 1982 by Yao but we present a simplification due to
Goldreich and Levin as presented by Talbot and Welsh.[TW06]18 A detailed proof is available
as usual in the Goldreich book.[Gol01]19

Theorem 1. Hard-Core Predicates from Strong One Way Functions

Let f be an arbitrary strong one way function. Let g be defined as g(x, r) =
(f(x), r), where |x| = |r|. Let r be a random bit string. Then define B(x, r) to
be a Hard-Core Predicate of g by:

B(x, r) =

|x|∑
i=1

xiri (mod 2)

= x̄ · r̄ (mod 2)

The theorem states, if f is strongly one way then it will be hard to guess the result of taking
an exclusive-or of a random subset of x given f(x) and the subset r. If B(x, r) is not a
hard-core of g then f is easily invertible. The proof involves constructing an algorithm from
the predictor for B. For details on the construction once again see Goldreich.

With the result of theorem 1 and the ability to construct strong one way functions from
weak one way functions one will always be able to construct a function where at least one
predicate on x is hard to compute. If one bit is not enough it turns out hard-core functions
are also constructable. However, their specific details are well out of the scope of this paper.

3.4 Constructing One Way Functions

It one is going to build a crypto-system based on hard computational problems (specifically
strong one way functions) one should have some way of identifying such problems. From a
practical perspective there are three number theoretic based problems which are assumed
to be one way functions. The first is the discrete log problem: gx ≡ y (mod p), second
finding square roots mod N = pq, and third the “RSA” problem c ≡ xe (mod N). While
these problems are likely to be used in practice none of them are suspected to be in the
class NP-Hard. While, instances of problems in NP-Hard may be efficiently solvable there
is good evidence they are not. In contrast these problems are potentially vulnerable to good
approximation algorithms.

Thus, an open problem for the aspiring cryptographer to tackle is to suggest a novel one
way function. However, serious care needs to be exercised when suggesting such a function.
It is not good enough for the function to be difficult in the worst-case it must be difficult in
the typical case. Average case complexity analysis relies heavily on the input distribution.
Thus, the input distribution must be carefully characterized and uniform sampling techniques
must be developed. Without exercising such care the aspiring cryptographer may fall into
the trap of defining something which appears secure from a cursory theoretical glance but
on close inspection is quite vulnerable.

18Theorem 10.8
19Section 2.5.2

11

4 Secure Encryption

Secure encryption schemes are naturally built on top of strong one way functions with hard-
core predicates. However, before the encryption schemes can be defined a formal definition
of security must be stated. Until now, our definition has been colloquial: information in the
ciphertext should be computationally infeasible to extract. The informal definition is too
vague for use in defining an encryption system because the security definition is more impor-
tant than the cryptographic system itself. A proper definition ensures systems conforming
to the definition will be more difficult to attack.

4.1 Security Definitions

Before rigorously defining a modern definition of security let us turn once again to classical
security and perfect-secrecy. Recall perfect secrecy says an attackers uncertainty about a
message should not be reduced when in possession of a corresponding ciphertext. As noted
in the introduction, the obvious criticism of perfect-secrecy is the implied key length. In
such a system, the length of the key must be at least as long as the message. Making the
definition impractical for most modern uses of cryptography. Therefore, a new definition is
indeed necessary.

4.1.1 Polynomial Indistinguishability

The first definition we will consider is polynomial-indistinguishability. Informally, if Alice has
two messages, M1 and M2 and she sends Bob a ciphertext, C, Eve who has been given both
messages and the ciphertext will have no easy way to determine which message it corresponds
to. Something is easy for Eve if she can do it in probabilistic polynomial time. Indeed, it is
assumed none of our characters can do any computations except easy ones. Formally,

Definition 9. Polynomial Indistinguishability of Encryptions20

An encryption scheme, (G,E,D), where G generates keys, E encrypts messages,
and D decrypts messages has indistinguishable encryptions if for every probabilis-
tic polynomial time algorithm, A′, every polynomial p(·), all sufficiently large n,
and every x, y ∈ {0, 1}poly(n) with |x| = |y|,

|Pr[A′(EG(1n)(x)) = 1]− Pr[A′(EG(1n)(y)) = 1]| < 1

p(n)

The above definition was written with a symmetric encryption and decryption keys. However,
the public key version only has minor and unimportant complications. The importance of
the definition is in the intuition. Eve, the attacker, knows both messages and she has a
ciphertext. The only thing she does not know is the key used to create the ciphertext. If
the system is polynomially indistinguishable then Eve can only guess which message the
ciphertext corresponds to. Since there are two messages she will only get it right half the

20Definition due to [Gol04] see Def. 5.2.3, simplified.

12

time. If she can get it right better than half the time then the system is not polynomially
indistinguishable.

The security of the definition is perhaps non-obvious but consider the case were Eve can
distinguish which message the ciphertext corresponds too. If the system was supposed to have
perfect-secrecy then clearly the secrecy would have been violated. Some bit of information
would be leaking from the message to the ciphertext. Therefore, what the definition is saying
is no information is leaking from the message to the ciphertext which can be extracted in
polynomial time.

4.1.2 Semantic Security

The intuitive explanation of polynomial indistinguishability is captured in an alternative
definition: semantic-security. A crypto-system is semantically secure if any piece of infor-
mation Eve can compute given a ciphertext she could just as easily compute without the
ciphertext. That is, the ciphertext provides Eve with no advantage for computing any piece
of information of interest to her. Formally,

Definition 10. Semantic Security21

An encryption scheme, (G,E,D), where G generates keys, E encrypts messages,
and D decrypts messages is semantically secure if for every probabilistic poly-
nomial time algorithm, A, there exists another probabilistic polynomial time
algorithm, A′, such that for every messageM of length n, every pair of functions
with polynomially bounded output f, h : {0, 1}∗ → {0, 1}∗, every polynomial
p(·), and all sufficiently large n,

Pr[A(1n, EG1(1n)(M), h(1n,M)] = f(1n,M)]

< Pr[A′(1n, h(1n,M)] = f(1n,M)] +
1

p(n)

In the above definition, f represents the information Eve would like to compute. The infor-
mation Eve wants, f , is a function of the message and the length of the message (encoded
for technical reasons in unary). The output of f is polynomial however it is not necessary for
f to be a computable function. The algorithm A guesses f using the ciphertext, the length
of the message, and h. The algorithm A′ guesses f using only the length of the message and
h. The function h represents a polynomial amount of a-priori knowledge about the output
of f .

The definition of semantic security intuitive says the probability Eve can guess f utilizing
the ciphertext is at most negligibly greater than guessing f without the ciphertext. The
definition places no restrictions on what Eve might be guessing (other than an upper bound
on its size). Eve could be guessing whether the message is an order to move troops, or the
message is a bank account number; it makes no difference to the definition.

Semantic-security is therefore the complexity theory analog of perfect-secrecy. It provides
assurance to the cryptographer that a polynomially bound cryptanalyst will be able to gain
no information from the ciphertext. In practice, one only cares about polynomially bound
adversaries since exponential adversaries do not exist.

21Definition due to [Gol04] see Def. 5.2.1, simplified.

13

4.1.3 Equivalence of Definitions

In a potentially surprising result it turns out it doesn’t matter which security definition one
uses, they imply each other:

Theorem 2. Equivalence of Definitions22

An encryption scheme is semantically secure if and only if it has indistinguishable
encryptions.

In practice, it is usually far easier to prove a scheme has indistinguishable ciphertexts.
However, from a security perspective the property one actually wants is semantic-security.
Thus, theorem 2 provides the cryptographer with an incredibly useful result.

4.2 A Secure Symmetric Key Encryption Scheme

To construct a perfectly secret symmetric key encryption scheme from an information theory
perspective one first obtains a large amount of random information. One then takes a
random bit for each bit of message and exclusive-ors them together. One now has the perfect
cryptographic system. The construction of a semantically secure system is quite similar (in
the case of stream ciphers). One takes a bit of random information, referred alternately
as the seed of the key, stretches it to create a pseudo-random sequence the same length as
the message. The message and the pseudo-random sequence are then xored together. This
encryption scheme will clearly be semantically secure if no adversary can distinguish between
the pseudo-random sequence and a truly random sequence.

4.2.1 Pseudo-Random Sequence Generators

A pseudo-random bit generator, G(x) is defined as a deterministic polynomial time algorithm
taking a bit-string, x ∈ {0, 1}k, and outputting a longer string G(x). In other words, the
generator stretches the input. For the generator to be pseudo-random in nature, the output
must be unpredictable if the input is random. Luckily, we already know how to produce
bits which are essentially unguessable by a polynomial adversary. Hard-core predicates by
construction cannot be guessed correctly better than half the time.

Theorem 3. A Pseudo-Random Generator can be Constructed from any One Way Permu-
tation.23,24

Let f : {0, 1}∗ → {0, 1}∗ be a one-way function length preserving permutation
with a hard core predicate B : {0, 1}∗ → {0, 1} then,

G : {0, 1}k → {0, 1}k+1

G(x) = (f(x), B(x))

is a pseudo-random generator.

22Theorem (and proof) due to [Gol04] Theorem 5.2.5.
23Theorem and proof due to [TW06] see theorem 10.9. My proof is a summary of Talbot and Welsh’s

main argument
24A one way permutation is simply a one way function which is a bijection from the domain to the range.

The existence of one way functions implies the existence of one way permutations.

14

Proof. If x is a random string, and therefore drawn from a uniform distribution over {0, 1}k,
then f(x) is also a random string. Therefore, if there is some test, T , which can distinguish
G(x) from a random string of length k+1 it must be distinguishing the last bit, B(x). Since,
it can distinguish B(x) from a random bit then one must be able to guess it significantly
better than half the time. However, this contradicts B(x) being a hard-core predicate of f(x).
Therefore, f is either not a one-way function or G(x) is a pseudo-random generator.

While, theorem 3 certainly constructs a pseudo-random number generator it is hardly
a useful one. Recall, the issue with perfect secrecy was the key size. If one constructed a
stream cipher from using theorem 3 one would only save 1 bit of key size over a one time
pad. Luckily, the following extension also holds:

Theorem 4. An l(k) Pseudo-Random Generator25

Let f : {0, 1}∗ → {0, 1}∗ be a one-way function length preserving permutation
with a hard core predicate B : {0, 1}∗ → {0, 1}. If l(·) is a positive polynomial
then,

G : {0, 1}k → {0, 1}l(k)

G(x) = (B(x), B(f(x)), B(f 2(x)), ..., B(f l(k)−1(x)))

is a pseudo-random generator.

With the construction in theorem 4 one can now generate a strong pseudo-random sequence.
If f is a strong one way function with a hard-core then no polynomial adversary can discern
between the output of the generator above and a truly random string.

Definition 11. A Symmetric Key Stream Cipher26

Setup Alice chooses a short random key x ∈R {0, 1}k
Key Distribution Alice secretly shares x with Bob.
Encryption Alice encrypts an m-bit message, M , by generating a pseudo-

random string:

G(x) = (B(f(x)), B(f 2(x)), ..., B(fm(x)))

and forming the cryptogram C = G(x)⊗M
Decryption Bob creates the same string G(x) an recovers the message via M =

G(x)⊗ C.

The strength of the cipher relies on the strength of G(x) and the strength of G(x) relies on
the underlying properties of the one way function, f . The above stream cipher is clearly
semantically secure since the ciphertexts are indistinguishable by Eve. If Eve could distin-
guish the ciphertexts than she could predict G(x). If Eve can predict G(x) than f must not
be a one way function.

While the above stream cipher is semantically secure, it is not necessarily the construction
one would use in practice. Often, one would instead want to use a block cipher. Luckily, one
can also construct block based ciphers from pseudo-random generators. For these an many
other complications I refer you to Oded Goldreich’s 2004 book.[Gol04]

25Theorem due to [TW06] see Theorem 10.10
26Definition due to [TW06] see page 216.

15

4.3 Public Key Schemes

I will not discuss the public key schemes in detail. The definitions for security setup in
section 4.1 are implicitly for symmetric key systems. While, the modifications are fairly
trivial they should be given proper treatment. In addition the public key systems deserve a
thorough explanation. I will settle for some brief remarks.

The RSA cryptographic system does not satisfy the property of polynomial indistin-
guishability. In particular, if Eve wants to tell whether C corresponds to M1 or to M2 all
she has to do is encrypt both messages can compare their ciphertexts. Eve and easily do
this since the encryption algorithm in a public key system is public and therefore available
to Eve.

The encryption algorithm being publicly available seems to be an insurmountable obstacle
at first, but it turns out to be possible to overcome it. In the case of the RSA algorithm
one needs to introduce randomness (and thus uncertainty) into the encryption process. One
such suggestion Randomized RSA introduces random data into each encryption thus ensuring
polynomial indistinguishability. However, Randomized RSA comes with a cost: one must
believe a different strong assumption. One must assume RSA has a “large” hard-core of
bits in the input. While, this may be a reasonable assumption it is a different assumption
and not implied by the usual RSA assumption. For details I once again commend you to
Goldreich’s 2004 book.[Gol04]

5 Concluding Remarks

Basing cryptographic security on computation complexity is a sound practice. It yields
systems with strong and extensible security guarantees. However, it also requires strong
assumptions. In particular, we must believe in “one way functions.” While, there is good
evidence they exist, and several candidate functions appear to work, we do not know they
exist. But, until a better formalism comes along complexity theory is secure in its position
as the basis of modern cryptography.

References

[Chu36] Alonzo Church, An Unsolvable Problem of Elementary Number Theory, American
Journal of Mathematics 58 (1936), no. 2, 345.

[Coo71] Stephen A. Cook, The complexity of theorem-proving procedures, Proceedings of
the third annual ACM symposium on Theory of computing - STOC ’71 (New York,
New York, USA), ACM Press, 1971, pp. 151–158.

[DH76] Whitfield Diffie and M. Hellman, New directions in cryptography, IEEE Transac-
tions on Information Theory 22 (1976), no. 6, 644–654.

[G3̈1] Kurt Gödel, On Formally Undecidable Propositions of Principia Mathematica and
Related Systems (translated by B. Meltzer 1962), Monatshefte für Mathematik und
Physik 38 (1931), 173–198.

16

[Gol01] Oded Goldreich, The Foundations of Cryptography : Basic Tools, Cambridge Uni-
versity Press, Cambridge, 2001.

[Gol04] , The Foundations of Cryptography : Basic Applications, Cambridge Uni-
versity Press, Cambridge, 2004.

[HP08] Jeffery Hoffstein and JC Pipher, An Introduction to Mathematical Cryptography,
Springer, New York, 2008.

[HS65] J Hartmanis and R E Stearns, On the computational complexity of algorithms,
Transactions of the American Mathematical Society 117 (1965), 285–285.

[Imp95] R. Impagliazzo, A personal view of average-case complexity, Structure in Complex-
ity Theory Conference, 1995., Proceedings of Tenth Annual IEEE, IEEE, 1995,
pp. 134–147.

[Kar72] R.M. Karp, Reducibility among combinatorial problems, 50 Years of Integer Pro-
gramming 1958-2008 (1972), 219–241.

[Knu76] Donald E Knuth, Big Omicron and big Omega and big Theta, ACM SIGACT News
8 (1976), no. 2, 18–24.

[RM00] Kenneth H Rosen, John G Michaels, and ..., Handbook of discrete and combinatorial
mathematics, CRC Press, Boca Raton, 2000.

[Tur37] A. M. Turing, On Computable Numbers, with an Application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society s2-42 (1937), no. 1,
230–265.

[TW06] John Talbot and Dominic Welsh, Complexity and Cryptography: An Introduction,
Cambridge University Press, Cambridge, 2006.

17

